Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Racemases amino acid racemase

Racemization also occurs in the presence of microbial racemase. As for other amino acids, the racemase that is specific for glutamic acid is found in... [Pg.303]

Hydantoinases belong to the E.C.3.5.2 group of cyclic amidases, which catalyze the hydrolysis of hydantoins [4,54]. As synthetic hydantoins are readily accessible by a variety of chemical syntheses, including Strecker reactions, enantioselective hydantoinase-catalyzed hydrolysis offers an attractive and general route to chiral amino acid derivatives. Moreover, hydantoins are easily racemized chemically or enzymatically by appropriate racemases, so that dynamic kinetic resolution with potential 100% conversion and complete enantioselectivity is theoretically possible. Indeed, a number of such cases using WT hydantoinases have been reported [54]. However, if asymmetric induction is poor or ifinversion ofenantioselectivity is desired, directed evolution can come to the rescue. Such a case has been reported, specifically in the production of i-methionine in a whole-cell system ( . coli) (Figure 2.13) [55]. [Pg.39]

Asano et al. have developed an approach for the synthesis of D-amino acids through DKR using a two-enzyme system [55]. They had previously reported the discovery of new D-stereospecific hydrolases that can be applied to KR of racemic amino acid amides to yield D-amino acids. Combination of a D-stereospedfic hydrolase with an amino acid amide racemase allows performing DKR of i-amino acid amides yielding enantiomerically pure D-amino acids in excellent yields (Figure 4.29). [Pg.106]

The main application of the enzymatic hydrolysis of the amide bond is the en-antioselective synthesis of amino acids [4,97]. Acylases (EC 3.5.1.n) catalyze the hydrolysis of the N-acyl groups of a broad range of amino acid derivatives. They accept several acyl groups (acetyl, chloroacetyl, formyl, and carbamoyl) but they require a free a-carboxyl group. In general, acylases are selective for i-amino acids, but d-selective acylase have been reported. The kinetic resolution of amino acids by acylase-catalyzed hydrolysis is a well-established process [4]. The in situ racemization of the substrate in the presence of a racemase converts the process into a DKR. Alternatively, the remaining enantiomer of the N-acyl amino acid can be isolated and racemized via the formation of an oxazolone, as shown in Figure 6.34. [Pg.146]

Racemic a-amino amides and a-hydroxy amides have been hydrolyzed enantio-selectively by amidases. Both L-selective and o-selective amidases are known. For example, a purified L-selective amidase from Ochrobactrum anthropi combines a very broad substrate specificity with a high enantioselectivity on a-hydrogen and a,a-disubstituted a-amino acid amides, a-hydroxyacid amides, and a-N-hydroxya-mino acid amides [102]. A racemase (a-amino-e-caprolactam racemase, EC 5.1.1.15) converts the o-aminopeptidase-catalyzed hydrolysis of a-amino acid amides into a DKR (Figure 6.38) [103]. [Pg.148]

In many cases, the racemization of a substrate required for DKR is difficult As an example, the production of optically pure cc-amino acids, which are used as intermediates for pharmaceuticals, cosmetics, and as chiral synfhons in organic chemistry [31], may be discussed. One of the important methods of the synthesis of amino acids is the hydrolysis of the appropriate hydantoins. Racemic 5-substituted hydantoins 15 are easily available from aldehydes using a commonly known synthetic procedure (Scheme 5.10) [32]. In the next step, they are enantioselectively hydrolyzed by d- or L-specific hydantoinase and the resulting N-carbamoyl amino acids 16 are hydrolyzed to optically pure a-amino acid 17 by other enzymes, namely, L- or D-specific carbamoylase. This process was introduced in the 1970s for the production of L-amino acids 17 [33]. For many substrates, the racemization process is too slow and in order to increase its rate enzymes called racemases are used. In processes the three enzymes, racemase, hydantoinase, and carbamoylase, can be used simultaneously this enables the production of a-amino acids without isolation of intermediates and increases the yield and productivity. Unfortunately, the commercial application of this process is limited because it is based on L-selective hydantoin-hydrolyzing enzymes [34, 35]. For production of D-amino acid the enzymes of opposite stereoselectivity are required. A recent study indicates that the inversion of enantioselectivity of hydantoinase, the key enzyme in the... [Pg.103]

Recently, recombinant biocatalysts obtained using Escherichia coli cells were designed for this process. The overexpression of all enzymes required for the process, namely, hydantoinase, carbamoylase, and hydantoin racemase from Arthrobacter sp. DSM 9771 was achieved. These cells were used for production of a-amino acids at the concentration of above 50 g 1 dry cell weight [37]. This is an excellent example presenting the power of biocatalysis with respect to classical catalysis, since a simultaneous use of three different biocatalysts originated from one microorganism can be easily achieved. [Pg.104]

The reaction mechanism for glutamate racemase has been studied extensively. It has been proposed that the key for the racemization activity is that the two cysteine residues of the enzyme are located on both sides of the substrate bound to the active site. Thus, one cysteine residue abstracts the a-proton from the substrate, while the other detivers a proton from the opposite side of the intermediate enolate of the amino acid. In this way, the racemase catalyzes the racemization of glutamic acid via a so-called two-base mechanism (Fig. 15). [Pg.318]

The tertiary structure of glutamate racemase has already been resolved and it has also been shown that a substrate analog glutamine binds between two cysteine residues. These data enabled us to predict that the new proton-donating amino acid residue should be introduced at position 74 instead of Gly for the inversion of enantioselectivity of the decarboxylation reaction. [Pg.318]

Several hundred tons of L-methionine per year are produced by enzymatic conversion in an enzyme membrane reactor. An alternative approach is dynamic resolution, where the unconverted enantiomer is racemized in situ. Starting from racemic /V-acetyl-amino acid, the enantioselective L-acylase is used in combination with an TV-acyl-amino acid racemase to enable nearly total conversion of the substrate. [Pg.87]

Asano, Y. and Yamaguchi, S. (2005) Dynamic kinetic resolution of amino acid amide catalyzed by D-aminopeptidase and a-amino-e-caprolactam racemase. Journal of the American Chemical Society, 127 (21), 7696-7697. [Pg.334]

Boesten, W.H.J., Raemakers-Franken, PC., Sonke, T. et al. (2003) Protein and cDNA sequences of -//- -amino acid amide racemases cloned from Ochrobactrum anthropi and Arthrobacter nicotianae, W02003106691. [Pg.334]

Nimura N, Fujiwara T, Watanabe A, Sekine M, Furuchi T, et al. 2003. A novel chiral thiol reagent for automated precolumn derivatization and high-performance liquid chromatographic enantioseparation of amino acids and its application to the aspartate racemase assay. Anal Bio-chem 315 262-269. [Pg.39]

Isolated from Streptomyces Amino acid with antimicrobial activity 90 catenulae (inhibitor of alanine racemase)... [Pg.18]

A/-Carbamoylase Combined with A/-Acyi Amino Acid Racemase to Produce L-Homophenyiaianine... [Pg.72]

Turning to l-AAO, Pantaleone s industrial research group have reported" on the properties and use of an l-AAO from Proteus myxofaciens, overexpressed in Escherichia coli This l-AAO, unusually, appears not to produce H2O2 in the catalytic reaction, thus making the addition of catalase unnecessary. The enzyme has a broad specificity, with a preference for nonpolar amino acids. This l-AAO was used in conjunction with a D-amino acid transaminase (d-AAT) and an alanine racemase (AR) to allow an efficient conversion of L-amino acid in to D-amino acid (Scheme 4). [Pg.75]

Hsu et have cloned two enzymes from Deimcoccus radiodurans for overexpression in E. coli in order to carry out a dynamic kinetic resolution to obtain L-homophenylalanine, frequently required for pharmaceutical synthesis. The starting material is the racemic mixture of A acetylated homophenylalanine, and the two enzymes are an amino acid A -acylase, which specifically removes the acetyl group from the L-enantiomer, and a racemase, which interconverts the D- and L-forms of the A acyl amino acids. The resolution was carried out successfully using whole-cell biocatalysts, with the two enzymes either expressed in separate E. coli strains or coexpressed in the same cells. [Pg.85]

In Section 5.03.6.2, a stereoselective synthesis of L-homophenylalanine from the racemic AAacetylated amino acid is described. The authors, however, found that substrate solubility limited the utility of this procedure. Having found an L-N-carbamoylase in Bacillus kaustophilus, they introduced the gene for this enzyme together with that for the N-acyl amino acid racemase from D. radiodurans into E. coli for coexpression. These cells, permeabilized with 0.5% toluene, were able to deliver L-homophenylalanine in 99% yield and were able to be used for multiple reaction cycles. [Pg.86]

Stadtman TC, Elliott P. 1957. Studies on the Enzymatic Reduction of amino acids II. Purification and properties of ao-proline reductase and a prohne racemase from Clostridium sticklandii. 1 Biol Chem 228 983-97. [Pg.170]

Transaminases Racemases Decarboxylases Various amino acid synthases... [Pg.4]

The reversal of this process could potentially occur with reprotonation from either face of the C=N double bond, and a mixture of aldimines would result, leading to generation of a racemic amino acid. This accounts for the mode of action of PLP-dependent amino acid racemase enzymes. Of course, the enzyme controls removal and supply of protons this is not a random event. One important example of this reaction is alanine racemase, employed by bacteria to convert L-alanine into o-alanine for cell-wall synthesis (see Box 13.12). [Pg.600]

Cycloserine (Fig- 4) is produced by several species of Streptomyces. One of the basic glycosyl components of the bacterial cell wall, n-acetyl-muramic acid (the product of Mur A and MurB), is modified by the addition of the first three amino acids sequentially by MurC, MurD and MurE enzymes. A dipeptide, D-alanyl-D-alanine is then added to make the pentapeptide. In bacteria, L-alanine is the native form and it is converted to D-alanine form by alanine racemase (Air). Two D-alanines are joined by D-ala-D-ala ligase (DdlA) to synthesize the dipeptide. Cycloserine resembles the substrate for Air and Ddl and inhibits their respective reactions in stage I of the peptidoglycan biosynthesis (Fig. 2). [Pg.360]

This enzyme [EC 5.1.1.15], also referred to as 2-amino-hexano-6-lactam racemase, catalyzes the reversible interconversion of the L- and D-stereoisomers of 2-amino-hexano-6-lactam. The enzyme, which utilizes pyridoxal phosphate, will also catalyze the interconversion of 2-aminopentano-5-lactam and 2-amino-3-mercaptohex-ano-6-lactam. The enzyme exhibits a minor aminotransferase activity with certain a-amino acids. [Pg.54]

AMINO ACID RACEMASE Amino adds, peptides proteins, BIOCHEMICAL NOMENCLATURE AMINO ACID TURNOVER KINETICS AMINOACYLASE AMINOACYL-tRNA HYDROLASE Aminoacyl-tRNA synthetase,... [Pg.722]

PHENYLALANINE AMINOTRANSFERASE PHENYLALANINE AMMONIA-LYASE PHENYLALANINE DECARBOXYLASE PHENYLALANINE DEHYDROGENASE PHENYLALANINE MONOOXYGENASE PHENYLALANINE RACEMASE PHENYLALANINE AMINOTRANSFERASE AROMATIC AMINO ACID AMINOTRANSFERASE... [Pg.770]

Due to the absence of a hydrogen atom on the a-carbon, the a-fluoroalkyl amino acids (except, of course, the fluoroalanines, vide supra) cannot undergo an elimination of HR Consequently, they are more stable than fluoroalanines and other jS-fluoro amino acids previously described. On the other hand, similar to proteogenic amino acids, jS-fluoro amino acids and a-fluoroalkyl amino acids are generally substrates of pyridoxal phosphate depending on enzymes such as racemases and decarboxylases. When an amino acid is a substrate of such enzymes, the enzyme induces the development of a negative charge on the a-carbon, which can initiate a /(-elimination process. This reaction affords an electrophilic species (Michael acceptor type), which is able to add a nucleophilic residue of the enzyme. This notion of mechanism-based inhibitor is detailed in Chapter 7. [Pg.164]

Fluoro amino acids have been incorporated into peptides, in order to ease the transport or reduce the systemic toxicity. Thus, trifluoroalanine, a powerful inhibitor of alanine racemase, is an essential enzyme for the biosynthesis of the cell wall of bacteria. It has a low antibiotic activity because of its very poor transport. In order to facilitate this transport, the amino acid has been incorporated into a peptide. This delivery allows a reduction of the doses, and thus the toxicity of the treatment is lowered.3-FIuorophenylaIanine (3-F-Phe) is a substrate of phenylalanine hydroxylase, which transforms it into 3-F-Tyr. 3-F-Tyr has a high toxicity for animals, due to its ultimate metabolization into fluorocitrate, a powerful inhibitor of the Krebs cycle (cf. Chapter 7). 3-F-Phe has a low toxicicity toward fungus cells, but when delivered as a tripeptide 3-F-Phe becomes an efficient inhibitor of the growth of Candida albicans. This tripeptide goes into the cell by means of the active transport system of peptides, where the peptidases set free the 3-F-Phe. ... [Pg.171]

Among the numerous enzymes that utilize pyridoxal phosphate (PLP) as cofactor, the amino acid racemases, amino acid decarboxylases (e.g., aromatic amino acids, ornithine, glutamic acid), aminotransferases (y-aminobutyrate transaminase), and a-oxamine synthases, have been the main targets in the search for fluorinated mechanism-based inhibitors. Pharmaceutical companies have played a very active role in this promising research (control of the metabolism of amino acids and neuroamines is very important at the physiological level). [Pg.257]

Enzyme catalysed racemisation is an attractive method. The enzymes are known as racemases and they often need cofactois like pyrodoxyl phosphate (PEP) or bivalent metal ions to function properly. The snbstrates used in racemisation reactions have two features in common, i) the stereocentre carries a proton, ii) adjacent to the stereocentre is a carbonyl gronp or another function that make the proton at the stereocentre acidic. Most racemases work on amino acids and df-hydroxy acids. The principle of those needing PEP is formation of a Schiffs base between the aldehyde of PEP and the amino group of the amino acid (like in Figure 2.6). [Pg.57]


See other pages where Racemases amino acid racemase is mentioned: [Pg.1140]    [Pg.239]    [Pg.54]    [Pg.258]    [Pg.155]    [Pg.88]    [Pg.327]    [Pg.881]    [Pg.86]    [Pg.130]    [Pg.632]    [Pg.637]    [Pg.644]    [Pg.53]    [Pg.407]    [Pg.775]    [Pg.120]    [Pg.196]    [Pg.396]    [Pg.397]   
See also in sourсe #XX -- [ Pg.1283 , Pg.1289 , Pg.1293 , Pg.1306 , Pg.1307 , Pg.1440 ]




SEARCH



Amino acid racemases

Amino acid racemases

Amino acid racemases cell wall biosynthesis

Amino acid racemases cofactors

Amino acid racemases pyridoxal enzymes

Amino acid racemases pyridoxal phosphate

Amino acid racemases substrate specificity

Amino racemase

Broad Specificity Amino Acid Racemase

Enzyme amino acid racemases

Pyridoxal phosphate amino acid racemase

Racemase

Racemase amino acid

Racemase amino acid

© 2024 chempedia.info