Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinone reductive reactions

Each of the photosystems ejects an electron from the excited chlorin complex to a quinone within a nanosecond, followed by electron transfer along chains leading out of the charge separation center within 100 ns. The high potential reaction of Tyr and Mn in PSII is quite rapid, beginning in the simulations on the same time scale as the quinone reduction reaction. However, it has been suggested that tyrosine oxidation may not be rate limited by tunneling, but by H+ transfer (Diner et al., 2001). [Pg.92]

In the benzene and naphthalene series there are few examples of quinone reductions other than that of hydroquinone itself. There are, however, many intermediate reaction sequences in the anthraquinone series that depend on the generation, usually by employing aqueous "hydros" (sodium dithionite) of the so-called leuco compound. The reaction with leuco quinizarin [122308-59-2] is shown because this provides the key route to the important 1,4-diaminoanthtaquinones. [Pg.289]

The ready reversibility of this reaction is essential to the role that quinones play in cellular respiration, the process by which an organism uses molecular- oxygen to convert its food to carbon dioxide, water, and energy. Electrons are not transfened directly from the substrate molecule to oxygen but instead are transfened by way of an electron transport chain involving a succession of oxidation-reduction reactions. A key component of this electron transport chain is the substance known as ubiquinone, or coenzyme Q ... [Pg.1013]

The results presented above indicate that the previously unknown head-to-tail polymerization is the major reaction product of the iminium methide species. To investigate the generality of this reaction, we next studied a neutral ene-imine species shown in Scheme 7.9.48 As illustrated in this scheme, the generation of this reactive species requires quinone reduction followed by elimination of acetic acid. The ene-imine is structurally related to the methyleneindolenine reactive species that is a metabolic oxidation product of 3-methylindole (Scheme 7.9).57 59... [Pg.228]

We studied the reactions shown in Scheme 7.18 using the global fitting methodology described in Section 7.2.1. The quinone methide species rapidly built up in solution upon quinone reduction and trapped by either water or a proton to afford the final products shown in Scheme 7.18. global fitting provided the rates of quinone methide... [Pg.243]

While the cytochrome P-450 monooxygenase reaction described in Eq. (1) often involves hydroxylation of carbon, many other reactions are catalyzed by these enzyme systems. These reactions include oxidation of nitrogen and sulfur, epoxidation, dehalogenation, oxidative deamination and desulfuration, oxidative N-, O-, and S-dealkylation, and peroxidative reactions (56). Under anaerobic conditions, the enzyme system will also catalyze reduction of azo, nitro, N-oxide, and epoxide functional groups, and these reductive reactions have been recently reviewed (56, 57). Furthermore, the NADPH-cytochrome P-450 reductase is capable of catalyzing reduction of quinones, quinonimines, nitro-aromatics, azoaromatics, bipyridyliums, and tetrazoliums (58). [Pg.344]

Similar waves in the cathodic polarogram were observed by Donnet and Henrich 58) using oxidized carbon black. The wave disappeared after treatment with isobutyronitrile. It was assumed that isobutyro-nitrile gives an addition reaction with quinones. No reaction with this reagent was observed after reduction with hydrogen iodide, after treatment with aniline, or after treatment with diazomethane. The latter finding confirms the assumption by Studebaker et al. 38) that diazomethane is added to the quinones in the carbon black surface. [Pg.204]

Quinone Reduction This is a reversible, one-electron transfer reaction to the semi-quinone radical, followed by a second, reversible electron transfer that results in the formation of hydroquinone, as shown in Fig. 13.2. [Pg.281]

Ubiquinone (also called coenzyme Q) and plasto-quinone (Fig. 10-22d, e) are isoprenoids that function as lipophilic electron carriers in the oxidation-reduction reactions that drive ATP synthesis in mitochondria and chloroplasts, respectively. Both ubiquinone and plasto-quinone can accept either one or two electrons and either one or two protons (see Fig. 19-54). [Pg.363]

Because of the bulk of comparable material available, it has been possible to use half-wave potentials for some types of linear free energy relationships that have not been used in connection with rate and equilibrium constants. For example, it has been shown (7, 777) that the effects of substituents on quinone rings on their reactivity towards oxidation-reduction reactions, can be approximately expressed by Hammett substituent constants a. The susceptibility of the reactivity of a cyclic system to substitution in various positions can be expressed quantitatively (7). The numbers on formulae XIII—XV give the reaction constants Qn, r for the given position (values in brackets only very approximate) ... [Pg.56]

An advantage of the mediator model (Equation 9) is that it can be used to simplify the problem of describing contaminant reduction reactions if the mediator is characterized more easily than the bulk donor. In this case, the bulk donor is best neglected and the problem reduced to the mediator and contaminant half-reactions. The advantage is greatest when a complex microbiological transformation process can be reduced to a reaction with a well defined biogenic mediators, such as quinones (98, 99), porphyrins, or corronoids (100-102). [Pg.417]

A simple and effective chemical method was developed for quantitatively reducing quinones, based on their reaction with metallic zinc and zinc ions [248]. Comparison of this method with conventional electrochemical reduction [249-252] revealed the chemical method to be considerably superior. A reduction reaction of vitamin Kj and other quinones in the presence of Zn° and Zn2+ eliminates the need to apply large negative potentials and may also be performed in the absence of any applied electrochemical potential. Some quinones used, such as UQ-10, menadione, and vitamin K, of the menaquinone series (MKs 4-10) could all be reduced to their corresponding hydroquinones in these conditions. [Pg.427]

In addition to quinone reduction and hydroquinone oxidation, electrode reactions of many organic compounds are also inner-sphere. In these charge transfer is accompanied by profound transformation of the organic molecules. Some reactions are complicated by reactant and/or product adsorption. Anodic oxidation of chlorpro-mazine [54], ascorbic acid [127], anthraquinone-2,6-disulfonate [128], amines [129], phenol, and isopropanol [130] have been investigated. The latter reaction can be used for purification of wastewater. The cyclic voltammogram for cathodic reduction of fullerene Cm in acetonitrile solution exhibits 5 current peaks corresponding to different redox steps [131]. [Pg.249]

In the following scheme, the benzo[Z>]furan core of ( )-frondosin B was built up by the palladium-catalyzed quinone reduction, followed by Lewis acid-mediated benzo[Z>]furan formation <07OL3837>. In the total synthesis of bisabosquals, the core structure of benzo[ ]furan was constructed by an epoxide-ring opening reaction <07T10018>. [Pg.175]

They can also catalyze the opposite reaction, the coupling of quinol oxidation to quinone to the reduction of fumarate to succinate (Lemma et al., 1991). The m-configuration isomer of fumarate, maleinate, is neither produced in the oxidation reaction nor consumed as a substrate in the reduction reaction, i.e, the reaction is stereospecific in both directions. Depending on the direction of the reaction catalyzed in vivo, the members of the superfamily of succinate quinone oxidoreductases... [Pg.131]

Despite lack of sequence homology, the function of the quinone reduction site (Qi site) is similar to that of the secondary quinone-binding site (Qb site) of bacterial reaction centers. Both sites have a conserved histidine residue as quinone ligand and both quinone molecules are reduced to hydroquinone in two consecutive one-electron transfer steps. The midpoint potential for the first step is pH-independent at near neutrality, whereas that for the second reduction varies by 120mV per pH unit (Robertson et al., 1984). This suggests a reaction pathway Q —> Q" QH2, with both protons added concomitantly with the second electron. A stable semi-quinone anion intermediate can be detected by EPR spectroscopy of samples frozen during turnover (Yu et al., 1980 de Vries et al., 1980) or with the redox potential adjusted near the midpoint of ubiquinone (Robertson et al., 1984 Ohnishi and Trumpower, 1980). The semiquinone signal is not observed in the presence of antimycin, which is consistent with the proposal that antimycin inhibits the reaction at the site (Mitchell, 1976 Mitchell, 1975). [Pg.561]

By co-immobilizing tyrosinase with a serine esterase on a gold electrode, it is possible to establish a multistep reaction pathway that allows the activity of the esterase to be determined indirectly via measurement of o-quinone reduction at the electrode. The molecular architecture of a bi-enzyme sensor interface is shown schematically in Figure 57.13. [Pg.870]


See other pages where Quinone reductive reactions is mentioned: [Pg.70]    [Pg.70]    [Pg.221]    [Pg.262]    [Pg.292]    [Pg.49]    [Pg.157]    [Pg.44]    [Pg.396]    [Pg.455]    [Pg.163]    [Pg.285]    [Pg.512]    [Pg.764]    [Pg.477]    [Pg.86]    [Pg.157]    [Pg.104]    [Pg.260]    [Pg.97]    [Pg.544]    [Pg.1359]    [Pg.327]    [Pg.374]    [Pg.744]    [Pg.800]    [Pg.656]    [Pg.764]    [Pg.99]    [Pg.237]    [Pg.44]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



Quinone methides, generation quinones, reductive elimination reactions

Quinones reaction

Quinones reduction

Reductive reactions quinone oxidoreductase

© 2024 chempedia.info