Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quinolines organisms

These compounds can be malodorous as in the case of quinoline, or they can have a plecisant odor as does indole. They decompose on heating to give organic bases or ammonia that reduce the acidity of refining catalysts in conversion units such as reformers or crackers, and initiate gum formation in distillates (kerosene, gas oil). [Pg.326]

QUINOLINES AND ISOQUINOLINES] (Vol 20) -ofapigment [PIGBffiNTS - ORGANIC] (Vol 19) -lignosulfates as [SULFONIC ACIDS] (Vol 23)... [Pg.336]

Polycychc aromatic hydrocarbons (PAHs) are carcinogens produced by the thermal breakdown of organic materials. These are widely distributed in both food and the environment, and are some of the principal carcinogens in cigarette tar and air pollution. Of over 20 PAHs isolated, benzopyrene and quinoline compounds are the most commonly encountered in foods, particularly those which are broiled or fried (111). Shellfish living in petroleum contaminated waters may also contain PAHs (112). [Pg.481]

Physical Properties. Both (1) and (2) are weak bases, showing 4.94 and 5.40, respectively. Their facile formation of crystalline salts with either inorganic or organic acids and complexes with Lewis acids is in each case of considerable interest. Selected physical data for quinoline and isoquinoline are given in Table 1. Reference 4 greatly expands the range of data treated and adds to them substantially. [Pg.389]

The extraction of metal ions depends on the chelating ability of 8-hydroxyquinoline. Modification of the stmcture can improve its properties, eg, higher solubility in organic solvents (91). The extraction of nickel, cobalt, copper, and zinc from acid sulfates has been accompHshed using 8-hydroxyquinohne in an immiscible solvent (92). In the presence of oximes, halo-substituted 8-hydroxyquinolines have been used to recover copper and zinc from aqueous solutions (93). Dilute solutions of heavy metals such as mercury, ca dmium, copper, lead, and zinc can be purified using quinoline-8-carboxyhc acid adsorbed on various substrates (94). [Pg.393]

Ca.ta.lysts, A small amount of quinoline promotes the formation of rigid foams (qv) from diols and unsaturated dicarboxyhc acids (100). Acrolein and methacrolein 1,4-addition polymerisation is catalysed by lithium complexes of quinoline (101). Organic bases, including quinoline, promote the dehydrogenation of unbranched alkanes to unbranched alkenes using platinum on sodium mordenite (102). The peracetic acid epoxidation of a wide range of alkenes is catalysed by 8-hydroxyquinoline (103). Hydroformylation catalysts have been improved using 2-quinolone [59-31-4] (104) (see Catalysis). [Pg.394]

Practically all pyridazine-carboxylic and -polycarboxylic acids undergo decarboxylation when heated above 200 °C. As the corresponding products are usually isolated in high yields, decarboxylation is frequently used as the best synthetic route for many pyridazine and pyridazinone derivatives. For example, pyridazine-3-carboxylic acid eliminates carbon dioxide when heated at reduced pressure to give pyridazine in almost quantitative yield, but pyridazine is obtained in poor yield from pyridazine-4-carboxylic acid. Decarboxylation is usually carried out in acid solution, or by heating dry silver salts, while organic bases such as aniline, dimethylaniline and quinoline are used as catalysts for monodecarboxylation of pyridazine-4,5-dicarboxylic acids. [Pg.33]

Nitrogenous organic components such as toluidine, quinoline, aniline, etc. all act as inhibitors to the anodic reaction between metal and acid and thereby favour the cathodic reaction and accelerate the process. [Pg.709]

P4.2 The organic molecule quinoline has the structure shown below. [Pg.197]

General procedure for Heck coupling. A mixture of POPd (16.0 mg, 6 mol%), quinoline derivative (0.56 mmol), tert-butyl acrylate (356 mg, 2.8 mmol), and base (0.61 mmol) was stirred in 5 mL of anhydrous DMF at 135 °C for 24 h. The reaction mixture was allowed to cool to room temperature, quenched with water, and extracted with Et20. The combined organic layers were washed with water, dried over MgS04, and the solvents were removed under vacuum. The crude products were purified by flash chromatography on silica gel. [Pg.182]

Other poisons (modifiers) used to create such selective Pd catalysts may be metals 23 Zn, Cd, Zr, Ru, Au, Cu, Fe, Hg, Ag, Pb, Sb, and Sn or solvents (organic modifiers) 24 pyridine, quinoline, piperidine, aniline, diethylamine, other amines, chlorobenzene, and sulfur compounds. Hydroxides have also been used to increase the half-hydrogenation selectivity of Pd. [Pg.33]

Roberts EL, Chou PT, Alexander TA et al (1995) Effects of organized media on the excited-state intramolecular proton transfer of 10-hydroxybenzo[h]quinoline. J Phys Chem 99 5431-5437... [Pg.264]

The most broadly studied organic nitrogen compound is probably quinoline however, most studies report biodegradation. As we have seen from Table 14, quinoline is representative of the organonitrogen compounds present in the diesel cut. Its transformation has been studied in both, anaerobic and aerobic conditions. Several metabolic pathways have been proposed to explain the aerobic transformations however, no pathway has been proposed for quinoline metabolism under anaerobic conditions. [Pg.154]

In the first family, the metal is coordinated by one molecule of the pterin cofactor, while in the second, it is coordinated to two pterin molecules (both in the guanine dinucleotide form, with the two dinucleotides extending from the active site in opposite directions). Some enzymes also contain FejSj clusters (one or more), which do not seem to be directly linked to the Mo centers. The molybdenum hydroxylases invariably possess redox-active sites in addition to the molybdenum center and are found with two basic types of polypeptide architecture. The enzymes metabolizing quinoline-related compounds, and derivatives of nicotinic acid form a separate groups, in which each of the redox active centers are found in separate subunits. Those enzymes possessing flavin subunits are organized as a2jS2A2, with a pair of 2Fe-2S centers in the (3 subunit, the flavin in the (3 subunit, and the molybdenum in the y subunit. [Pg.167]


See other pages where Quinolines organisms is mentioned: [Pg.231]    [Pg.836]    [Pg.103]    [Pg.259]    [Pg.222]    [Pg.6]    [Pg.948]    [Pg.361]    [Pg.191]    [Pg.12]    [Pg.230]    [Pg.119]    [Pg.396]    [Pg.154]    [Pg.354]    [Pg.762]    [Pg.46]    [Pg.197]    [Pg.150]    [Pg.130]    [Pg.186]    [Pg.536]    [Pg.537]    [Pg.537]    [Pg.537]    [Pg.648]    [Pg.99]    [Pg.144]    [Pg.514]    [Pg.775]    [Pg.35]    [Pg.1638]    [Pg.92]    [Pg.242]    [Pg.165]    [Pg.169]    [Pg.177]   
See also in sourсe #XX -- [ Pg.162 , Pg.163 ]




SEARCH



© 2024 chempedia.info