Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum mechanics classical transition state theory

Surface Hopping Model (SHM) first proposed by Tully and Preston [444] is a practical method to cope with nonadiabatic transition. It is actually not a theory but an intuitive prescription to take account of quantum coherent jump by replacing with a classical hop from one potential energy surface to another with a transition probability that is borrowed from other theories of semiclassical (or full quantum mechanical) nonadiabatic transitions state theory such as Zhu-Nakamura method. The fewest switch surface hopping method [445] and the theory of natural decay of mixing [197, 452, 509, 515] are among the most advanced methodologies so far proposed to practically resolve the critical difficulty of SET and the primitive version of SHM. [Pg.2]

Especially in the early stages of mechanism development, it is not likely to be practical to carry out quantum chemistry and transition state theory calculations for all the possible reactions in the mechanism. So, simpler empirical methods must be used to obtain initial estimates of the rate parameters. Perhaps the most useful description of these methods is found in the classic text. Thermochemical Kinetics, by Benson [42]. The following rules of thumb for estimating rate parameters closely follow what is presented in more detail there. For different classes of reactions, the framework of transition state theory can be applied to aid in the estimation of rate parameters. This is most... [Pg.217]

Although the methods discussed above to incorporate electronic structure theory to model the PES and NQEs to determine the rate process are based on very different theories, a common strategy is to estimate approximately the quantum mechanical rate constant by introducing a quantum correction factor to bridge with the classical transition state theory ... [Pg.552]

A well defined theory of chemical reactions is required before analyzing solvent effects on this special type of solute. The transition state theory has had an enormous influence in the development of modern chemistry [32-37]. Quantum mechanical theories that go beyond the classical statistical mechanics theory of absolute rate have been developed by several authors [36,38,39], However, there are still compelling motivations to formulate an alternate approach to the quantum theory that goes beyond a theory of reaction rates. In this paper, a particular theory of chemical reactions is elaborated. In this theoretical scheme, solvent effects at the thermodynamic and quantum mechanical level can be treated with a fair degree of generality. The theory can be related to modern versions of the Marcus theory of electron transfer [19,40,41] but there is no... [Pg.284]

Of course, one is not really interested in classical mechanical calculations. Thus in normal practice the partition functions used in TST, as discussed in Chapter 4, are evaluated using quantum partition functions for harmonic frequencies (extension to anharmonicity is straightforward). On the other hand rotations and translations are handled classically both in TST and in VTST, which is a standard approximation except at very low temperatures. Later, by introducing canonical partition functions one can direct the discussion towards canonical variational transition state theory (CVTST) where the statistical mechanics involves ensembles defined in terms of temperature and volume. There is also a form of variational transition state theory based on microcanonical ensembles referred to by the symbol p,. Discussion of VTST based on microcanonical ensembles pVTST is beyond the scope of the discussion here. It is only mentioned that in pVTST the dividing surface is... [Pg.187]

Alhambra and co-workers adopted a QM/MM strategy to better understand quantum mechanical effects, and particularly the influence of tunneling, on the observed primary kinetic isotope effect of 3.3 in this system (that is, the reaction proceeds 3.3 times more slowly when the hydrogen isotope at C-2 is deuterium instead of protium). In order to carry out their analysis they combined fully classical MD trajectories with QM/MM modeling and analysis using variational transition-state theory. Kinetic isotope effects (KIEs), tunneling, and variational transition state theory are discussed in detail in Chapter 15 - we will not explore these topics in any particular depth in this case study, but will focus primarily on the QM/MM protocol. [Pg.482]

In addition to experiments, a range of theoretical techniques are available to calculate thermochemical information and reaction rates for homogeneous gas-phase reactions. These techniques include ab initio electronic structure calculations and semi-empirical approximations, transition state theory, RRKM theory, quantum mechanical reactive scattering, and the classical trajectory approach. Although still computationally intensive, such techniques have proved themselves useful in calculating gas-phase reaction energies, pathways, and rates. Some of the same approaches have been applied to surface kinetics and thermochemistry but with necessarily much less rigor. [Pg.476]

The rate constant predicted by conventional transition-state theory can turn out to be too small, compared to experimental data, when quantum tunneling plays a role. We would like to correct for this deviation, in a simple fashion. That is, to keep the basic theoretical framework of conventional transition-state theory, and only modify the assumption concerning the motion in the reaction coordinate. A key assumption in conventional transition-state theory is that motion in the reaction coordinate can be described by classical mechanics, and that a point of no return exists along the reaction path. [Pg.146]

Table 6.3 A comparison of different theoretical approaches to the evaluation of the thermal rate constant for the F + H2 —> HF + H reaction at T = 300 K. TST is transition-state theory (Example 6.2), QCT is the quasi-classical trajectory method [Chem. Phys. Lett. 254, 341 (1996)], and QM is (exact) quantum mechanics [J. Phys. Chem. 102, 341 (1998)]. Table 6.3 A comparison of different theoretical approaches to the evaluation of the thermal rate constant for the F + H2 —> HF + H reaction at T = 300 K. TST is transition-state theory (Example 6.2), QCT is the quasi-classical trajectory method [Chem. Phys. Lett. 254, 341 (1996)], and QM is (exact) quantum mechanics [J. Phys. Chem. 102, 341 (1998)].
There are two corrections to equation (12) that one might want to make. The first has to do with dynamical factors [19,20] i.e., trajectories leave Ra, crossing the surface 5/3, but then immediately return to Ra. Such a trajectory contributes to the transition probability Wfia, but is not really a reaction. We can correct for this as in variational transition-state theory (VTST) by shifting Sajj along the surface normals. [8,9] The second correction is for some quantum effects. Equation (14) indicates one way to include them. We can simply replace the classical partition functions by their quantum mechanical counterparts. This does not correct for tunneling and interference effects, however. [Pg.744]

The above discussion, as most of this chapter, is based on a classical picture of the chemical reactions. Quantum mechanical transition state theory is far less obvious even a transition state cannot be well defined. A particularly simple case that can be formulated within TST is described next. [Pg.497]

For another perspective we mention a second approach of which the reader should be aware. In this approach the dividing surface of transition state theory is defined not in terms of a classical mechanical reaction coordinate but rather in terms of the centroid coordinate of a path integral (path integral quantum TST, or PI-QTST) [96-99] or the average coordinate of a quanta wave packet. In model studies of a symmetric reaction, it was shown that the PI-QTST approach agrees well with the multidimensional transmission coefScient approach used here when the frequency of the bath is high, but both approaches are less accurate when the frequency is low, probably due to anharmonicity [98] and the path centroid constraint [97[. However, further analysis is needed to develop practical PI-QTST-type methods for asymmetric reactions [99]. [Pg.869]

Warshel and Chu [42] and Hwang et al. [60] were the first to calculate the contribution of tunneling and other nuclear quantum effects to PT in solution and enzyme catalysis, respectively. Since then, and in particular in the past few years, there has been a significant increase in simulations of quantum mechanical-nuclear effects in enzyme and in solution reactions [16]. The approaches used range from the quantized classical path (QCP) (for example. Refs. [4, 58, 95]), the centroid path integral approach [54, 55], and variational transition state theory [96], to the molecular dynamics with quantum transition (MDQT) surface hopping method [31] and density matrix evolution [97-99]. Most studies of enzymatic reactions did not yet examine the reference water reaction, and thus could only evaluate the quantum mechanical contribution to the enzyme rate constant, rather than the corresponding catalytic effect. However, studies that explored the actual catalytic contributions (for example. Refs. [4, 58, 95]) concluded that the quantum mechanical contributions are similar for the reaction in the enzyme and in solution, and thus, do not contribute to catalysis. [Pg.1196]

We present an overview of variational transition state theory from the perspective of the dynamical formulation of the theory. This formulation provides a firm classical mechanical foundation for a quantitative theory of reaction rate constants, and it provides a sturdy framework for the consistent inclusion of corrections for quantum mechanical effects and the effects of condensed phases. A central construct of the theory is the dividing surface separating reaction and product regions of phase space. We focus on the robust nature of the method offered by the flexibility of the dividing surface, which allows the accurate treatment of a variety of systems from activated and barrierless reactions in the gas phase, reactions in rigid environments, and reactions in liquids and enzymes. [Pg.67]

On a modest level of detail, kinetic studies aim at determining overall phenomenological rate laws. These may serve to discriminate between different mechanistic models. However, to it prove a compound reaction mechanism, it is necessary to determine the rate constant of each elementary step individually. Many kinetic experiments are devoted to the investigations of the temperature dependence of reaction rates. In addition to the obvious practical aspects, the temperature dependence of rate constants is also of great theoretical importance. Many statistical theories of chemical reactions are based on thermal equilibrium assumptions. Non-equilibrium effects are not only important for theories going beyond the classical transition-state picture. Eventually they might even be exploited to control chemical reactions [24]. This has led to the increased importance of energy or even quantum-state-resolved kinetic studies, which can be directly compared with detailed quantum-mechanical models of chemical reaction dynamics [25,26]. [Pg.2115]

The dynamics of molecular motion must be treated quantum mechanically if one is to have a quantitative description of chemical reactions. Since transition state theory is such a good approximation in classical mechanics—particularly at the lower energies that are most important for determining the thermally averaged rate k(T)—one would like to quantize it. Unfortunately there does not seem to be a way to quantize the basic transition state idea without also introducing other approximations. The heuristic argument goes as follows. [Pg.393]

One conclusion that can be reached from the early work on effective potentials [1,21-23], the work of Cao and Voth [3-8], as well as the centroid density-based formulation of quantum transition-state theory [42-44,49] is that the path centroid is a particularly useful variable in statistical mechanics about which to develop approximate, but quite accurate, quantum mechanical expressions and to probe the quantum-classical correspondence principle. It is in this spirit that a general centroid density-based formulation of quantum Boltzmann statistical mechanics is presented in the present section. This topic is the subject of Paper I, and the emphasis in this section is on analytic theory as opposed to computational approaches (cf. Sections III and IV). [Pg.141]


See other pages where Quantum mechanics classical transition state theory is mentioned: [Pg.3]    [Pg.26]    [Pg.120]    [Pg.174]    [Pg.2433]    [Pg.2115]    [Pg.3]    [Pg.485]    [Pg.170]    [Pg.329]    [Pg.186]    [Pg.630]    [Pg.99]    [Pg.345]    [Pg.293]    [Pg.331]    [Pg.116]    [Pg.51]    [Pg.41]    [Pg.159]    [Pg.227]    [Pg.49]    [Pg.4]    [Pg.1265]    [Pg.1331]    [Pg.121]    [Pg.1243]    [Pg.1243]    [Pg.387]    [Pg.401]    [Pg.458]    [Pg.79]    [Pg.140]   
See also in sourсe #XX -- [ Pg.2 , Pg.3 , Pg.4 , Pg.5 , Pg.6 ]




SEARCH



Classical mechanical

Classical mechanics

Classical theories

Classical transition state theory

Mechanical theory

Mechanics Theory

Mechanism theory

Quantum mechanical theory

Quantum mechanics theory

Quantum states

Quantum transition

Quantum transitional state theory

Quantum-mechanical states

State classical-mechanical

State mechanical

Transition quantum mechanical theory

Transition state quantum

© 2024 chempedia.info