Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Wavepacket dynamics

CN] —> I + CN. Wavepacket moves and spreads in time, with its centre evolving about 5 A in 200 fs. Wavepacket dynamics refers to motion on the intennediate potential energy surface B. Reprinted from Williams S O and lime D G 1988 J. Phys. Chem.. 92 6648. (c) Calculated FTS signal (total fluorescence from state C) as a fiinction of the time delay between the first excitation pulse (A B) and the second excitation pulse (B -> C). Reprinted from Williams S O and Imre D G, as above. [Pg.243]

As discussed above, the nonlinear material response, P f) is the most connnonly encountered nonlinear tenn since vanishes in an isotropic medium. Because of the special importance of P we will discuss it in some detail. We will now focus on a few examples ofP spectroscopy where just one or two of the 48 double-sided Feymnan diagrams are important, and will stress the dynamical interpretation of the signal. A pictorial interpretation of all the different resonant diagrams in temis of wavepacket dynamics is given in [41]. [Pg.260]

Figure Al.6.21. Bra and ket wavepacket dynamics which detennine the coherence overlap, (( ) ( ) ). Vertical arrows mark the transitions between electronic states and horizontal arrows indicate free propagation on the potential surface. Full curves are used for the ket wavepacket, while dashed curves indicate the bra wavepacket. (a) Stimulated emission, (b) Excited state (transient) absorption (from [41]). Figure Al.6.21. Bra and ket wavepacket dynamics which detennine the coherence overlap, (( ) ( ) ). Vertical arrows mark the transitions between electronic states and horizontal arrows indicate free propagation on the potential surface. Full curves are used for the ket wavepacket, while dashed curves indicate the bra wavepacket. (a) Stimulated emission, (b) Excited state (transient) absorption (from [41]).
Knopp G, Pinkas I and Prior Y 2000 Two-dimensional time-delayed coherent anti-Stokes Raman spectroscopy and wavepacket dynamics of high ground-state vibrations J. Raman Spectrosc. 31 51... [Pg.280]

Marquardt R, Quack M, Stohner J and Sutcliffe E 1986 Quantum-mechanical wavepacket dynamics of the CH group in the symmetric top XgCH compounds using effective Hamiltonians from high-resolution spectroscopy J. Chem. Soc., Faraday Trans. 2 82 1173-87... [Pg.1087]

If the PES are known, the time-dependent Schrbdinger equation, Eq. (1), can in principle be solved directly using what are termed wavepacket dynamics [15-18]. Here, a time-independent basis set expansion is used to represent the wavepacket and the Hamiltonian. The evolution is then carried by the expansion coefficients. While providing a complete description of the system dynamics, these methods are restricted to the study of typically 3-6 degrees of freedom. Even the highly efficient multiconfiguration time-dependent Hartree (MCTDH) method [19,20], which uses a time-dependent basis set expansion, can handle no more than 30 degrees of freedom. [Pg.252]

A further model Hamiltonian that is tailored for the treatment of non-adiabatic systems is the vibronic coupling (VC) model of Koppel et al. [65]. This provides an analytic expression for PES coupled by non-adiabatic effects, which can be fitted to ab initio calculations using only a few data points. As a result, it is a useful tool in the description of photochemical systems. It is also very useful in the development of dynamics methods, as it provides realistic global surfaces that can be used both for exact quantum wavepacket dynamics and more approximate methods. [Pg.255]

Figure 2. Wavepacket dynamics of the H + H H2 + H scattering reaction, shown as snapshots of the density (wave packet amplitude squard) at various times, The coordinates, in au, are described in Figure la, and the wavepacket is initially moving to describe the H atom approaching the H2 molecule. The density has been integrated over the angular coordinate, The PES is plotted for the collinear interaction geometry, 0 180, ... Figure 2. Wavepacket dynamics of the H + H H2 + H scattering reaction, shown as snapshots of the density (wave packet amplitude squard) at various times, The coordinates, in au, are described in Figure la, and the wavepacket is initially moving to describe the H atom approaching the H2 molecule. The density has been integrated over the angular coordinate, The PES is plotted for the collinear interaction geometry, 0 180, ...
As shown above in Section UFA, the use of wavepacket dynamics to study non-adiabatic systems is a trivial extension of the methods described for adiabatic systems in Section H E. The equations of motion have the same form, but now there is a wavepacket for each electronic state. The motions of these packets are then coupled by the non-adiabatic terms in the Hamiltonian operator matrix elements. In contrast, the methods in Section II that use trajectories in phase space to represent the time evolution of the nuclear wave function cannot be... [Pg.288]

Figure 8, Wavepacket dynamics of the butatriene radical cation after its production in the A state, shown as snapshots of the adiabatic density (wavepacket amplitude squared) at various times. The 2D model uses the coordinates in Figure Ic, and includes the coupled A andX states, The PES are plotted in the adiabatic picture (see Fig. lb). The initial structure represents the neutral ground-state vibronic wave function vertically excited onto the diabatic A state of the radical cation,... Figure 8, Wavepacket dynamics of the butatriene radical cation after its production in the A state, shown as snapshots of the adiabatic density (wavepacket amplitude squared) at various times. The 2D model uses the coordinates in Figure Ic, and includes the coupled A andX states, The PES are plotted in the adiabatic picture (see Fig. lb). The initial structure represents the neutral ground-state vibronic wave function vertically excited onto the diabatic A state of the radical cation,...
On the potential energy surfaces thus obtained 2D wavepacket dynamics calculations have been performed in the diabatic state representation. The reduced massses are regarded as those of CH2-ethylene system. The validity was examined by using on-the-fly ab initio molecular dynamics that were supplementarily performed. The dynamics calculations performed are composed of the following steps ... [Pg.186]

One can also ask about the relationship of the FMS method, as opposed to AIMS, with other wavepacket and semiclassical nonadiabatic dynamics methods. We first compare FMS to previous methods in cases where there is no spawning, and then proceed to compare with previous methods for nonadiabatic dynamics. We stress that we have always allowed for spawning in our applications of the method, and indeed the whole point of the FMS method is to address problems where localized nuclear quantum mechanical effects are important. Nevertheless, it is useful to place the method in context by asking how it relates to previous methods in the absence of its adaptive basis set character. There have been many attempts to use Gaussian basis functions in wavepacket dynamics, and we cannot mention all of these. Instead, we limit ourselves to those methods that we feel are most closely related to FMS, with apologies to those that are not included. A nice review that covers some of the... [Pg.464]

Heller, E. J. (1991), Wavepacket Dynamics and Quantum Chaology, in Chaos and Quantum Physics, M.-J. Giannoni et al. (Eds.) Elsevier. [Pg.227]

An interesting application of the 2-RDM was the calculation of excited states in the space of one-particle one-hole excitations [18, 25-30] with reasonably good results, as well as the study of wavepacket dynamics [31]. [Pg.15]

We have presented the first published results of a QM/MM wavepacket dynamics study of a photochemical reaction. The photoisomerization mechanism for the GFP chromophore that we observe has the signatures of HT motion, even in the complete absence of an environment. The HT mechanism is aborted in both the gas phase and solution, but the... [Pg.430]


See other pages where Wavepacket dynamics is mentioned: [Pg.243]    [Pg.245]    [Pg.250]    [Pg.2144]    [Pg.279]    [Pg.115]    [Pg.329]    [Pg.56]    [Pg.384]    [Pg.250]    [Pg.251]    [Pg.270]    [Pg.264]    [Pg.273]    [Pg.273]    [Pg.274]    [Pg.274]    [Pg.275]    [Pg.376]    [Pg.59]    [Pg.60]    [Pg.194]    [Pg.28]    [Pg.87]    [Pg.91]   
See also in sourсe #XX -- [ Pg.15 ]

See also in sourсe #XX -- [ Pg.287 , Pg.335 , Pg.338 , Pg.341 , Pg.342 ]

See also in sourсe #XX -- [ Pg.443 ]

See also in sourсe #XX -- [ Pg.7 , Pg.23 , Pg.107 , Pg.108 , Pg.109 , Pg.110 , Pg.111 , Pg.112 , Pg.113 , Pg.114 , Pg.115 , Pg.116 , Pg.117 , Pg.118 , Pg.119 , Pg.120 ]




SEARCH



Adiabatic molecular dynamics Gaussian wavepacket propagation

Complex-valued natural orbitals in electron wavepacket dynamics

Direct molecular dynamics Gaussian wavepacket propagation

Direct molecular dynamics Gaussian wavepackets and multiple

Eigenfunctions extracted from wavepacket dynamics Energy screening

Gaussian wavepacket dynamics

Gaussian wavepacket dynamics algorithm

Nonadiabatic Electron Wavepacket Dynamics in Path-branching Representation

Nonadiabatic wavepacket dynamics

Nuclear Wavepacket Dynamics at Surfaces

Nuclear wavepacket dynamics

Photodissociation wavepacket dynamics

Quantum wavepacket ab initio molecular dynamics

Quantum wavepacket dynamics

Reaction Path Specific Wavepacket Dynamics in Double Proton Transfer Molecules

Reaction-Path-Specific Wavepacket Dynamics in Double ESIPT

Vibrational wavepacket dynamics

Wavepacket

Wavepacket Dynamics of Hydrogen Bonds in the Electronic Ground State

Wavepacket dynamics short-time

Wavepacket dynamics simulation

Wavepackets

© 2024 chempedia.info