Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ehrenfest dynamics

To add non-adiabatic effects to semiclassical methods, it is necessary to allow the trajectories to sample the different surfaces in a way that simulates the population transfer between electronic states. This sampling is most commonly done by using surface hopping techniques or Ehrenfest dynamics. Recent reviews of these methods are found in [30-32]. Gaussian wavepacket methods have also been extended to include non-adiabatic effects [33,34]. Of particular interest here is the spawning method of Martinez, Ben-Nun, and Levine [35,36], which has been used already in a number of direct dynamics studies. [Pg.253]

Direct dynamics attempts to break this bottleneck in the study of MD, retaining the accuracy of the full electronic PES without the need for an analytic fit of data. The first studies in this field used semiclassical methods with semiempirical [66,67] or simple Hartree-Fock [68] wave functions to heat the electrons. These first studies used what is called BO dynamics, evaluating the PES at each step from the elech onic wave function obtained by solution of the electronic structure problem. An alternative, the Ehrenfest dynamics method, is to propagate the electronic wave function at the same time as the nuclei. Although early direct dynamics studies using this method [69-71] restricted themselves to adiabatic problems, the method can incorporate non-adiabatic effects directly in the electionic wave function. [Pg.255]

The standard semiclassical methods are surface hopping and Ehrenfest dynamics (also known as the classical path (CP) method [197]), and they will be outlined below. More details and comparisons can be found in [30-32]. The multiple spawning method, based on Gaussian wavepacket propagation, is also outlined below. See [1] for further infomiation on both quantum and semiclassical non-adiabatic dynamics methods. [Pg.290]

Both the BO dynamics and Gaussian wavepacket methods described above in Section n separate the nuclear and electronic motion at the outset, and use the concept of potential energy surfaces. In what is generally known as the Ehrenfest dynamics method, the picture is still of semiclassical nuclei and quantum mechanical electrons, but in a fundamentally different approach the electronic wave function is propagated at the same time as the pseudoparticles. These are driven by standard classical equations of motion, with the force provided by an instantaneous potential energy function... [Pg.290]

The MMVB force field has also been used with Ehrenfest dynamics to propagate trajectories using mixed-state forces [84]. The motivation for this is... [Pg.304]

Quantum chemical methods, exemplified by CASSCF and other MCSCF methods, have now evolved to an extent where it is possible to routinely treat accurately the excited electronic states of molecules containing a number of atoms. Mixed nuclear dynamics, such as swarm of trajectory based surface hopping or Ehrenfest dynamics, or the Gaussian wavepacket based multiple spawning method, use an approximate representation of the nuclear wavepacket based on classical trajectories. They are thus able to use the infoiination from quantum chemistry calculations required for the propagation of the nuclei in the form of forces. These methods seem able to reproduce, at least qualitatively, the dynamics of non-adiabatic systems. Test calculations have now been run using duect dynamics, and these show that even a small number of trajectories is able to produce useful mechanistic infomiation about the photochemistry of a system. In some cases it is even possible to extract some quantitative information. [Pg.311]

Solving the Eqs. (C.6-C.8,C.12,C.13) comprise what is known as the Ehrenfest dynamics method. This method has appealed under a number of names and derivations in the literatnre such as the classical path method, eilconal approximation, and hemiquantal dynamics. It has also been put to a number of different applications, often using an analytic PES for the electronic degrees of freedom, but splitting the nuclear degrees of freedom into quantum and classical parts. [Pg.318]

Eckart conditions, Renner-Teller effect, triatomic molecules, 610-615 Ehrenfest dynamics, direct molecular dynamics error sources, 403—404 Gaussian wavepacket propagation, 378-383 molecular mechanics valence bond (MMVB), 409-411... [Pg.75]

How well do these quantum-semiclassical methods work in describing the dynamics of non-adiabatic systems There are two sources of errors, one due to the approximations in the methods themselves, and the other due to errors in their application, for example, lack of convergence. For example, an obvious source of error in surface hopping and Ehrenfest dynamics is that coherence effects due to the phases of the nuclear wavepackets on the different surfaces are not included. This information is important for the description of short-time (few femtoseconds) quantum mechanical effects. For longer timescales, however, this loss of information should be less of a problem as dephasing washes out this information. Note that surface hopping should be run in an adiabatic representation, whereas the other methods show no preference for diabatic or adiabatic. [Pg.403]

Muller and Stock [227] used the vibronic coupling model Hamiltonian, Section III.D, to compare surface hopping and Ehrenfest dynamics with exact calculations for a number of model cases. The results again show that the semiclassical methods are able to provide a qualitative, if not quantitative, description of the dynamics. A large-scale comparison of mixed method and quantum dynamics has been made in a study of the pyrazine absorption spectrum, including all 24 degrees of freedom [228]. Here a method related to Ehrenfest dynamics was used with reasonable success, showing that these methods are indeed able to reproduce the main features of the dynamics of non-adiabatic molecular systems. [Pg.404]

Ehrenfest dynamics with the MMVB method has also been applied to the study of intermolecular energy transfer in anthryl-naphthylalkanes [85]. These molecules have a naphthalene joined to a anthracene by a short alkyl —(CH)n— chain. After exciting the naphthalene moiety, if n = 1 emission is seen from both parts of the system, if n = 3 emission is exclusively from the anthracene. The mechanism of this energy exchange is still not clear. This system is at the limits of the MMVB method, and the number of configurations required means that only a small number of trajectories can be run. The method is also unable to model the zwitterionic states that may be involved. Even so, the calculations provide some mechanistic information, which supports a stepwise exchange of energy, rather than the conventional direct process. [Pg.410]

Therefore, it is more appropriate to start from an approach which is known as Ehrenfest dynamics. In the present case it is based on the following time-dependent Schrodinger equation for the CC electronic wave function... [Pg.53]

The mixed-state Ehrenfest dynamics has problems after leaving the region of the nonadiabatic event. When the surfaces are sufficiently close in energy, the semi-classical Ehrenfest dynamics is switched on. Away from the degeneracy, the population on a single surface is recovered by reverting to the single-state quasi-classical dynamics. [Pg.94]


See other pages where Ehrenfest dynamics is mentioned: [Pg.250]    [Pg.255]    [Pg.298]    [Pg.298]    [Pg.299]    [Pg.305]    [Pg.305]    [Pg.311]    [Pg.311]    [Pg.74]    [Pg.85]    [Pg.89]    [Pg.97]    [Pg.355]    [Pg.360]    [Pg.395]    [Pg.403]    [Pg.410]    [Pg.416]    [Pg.416]    [Pg.167]    [Pg.38]    [Pg.92]    [Pg.93]    [Pg.93]    [Pg.355]   
See also in sourсe #XX -- [ Pg.38 , Pg.53 ]

See also in sourсe #XX -- [ Pg.150 ]

See also in sourсe #XX -- [ Pg.105 ]




SEARCH



Ehrenfest

Mixed-state trajectory Ehrenfest dynamics

Time-dependent equation Ehrenfest dynamics

© 2024 chempedia.info