Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quantum electronic properties

Electrons, protons and neutrons and all other particles that have s = are known as fennions. Other particles are restricted to s = 0 or 1 and are known as bosons. There are thus profound differences in the quantum-mechanical properties of fennions and bosons, which have important implications in fields ranging from statistical mechanics to spectroscopic selection mles. It can be shown that the spin quantum number S associated with an even number of fennions must be integral, while that for an odd number of them must be half-integral. The resulting composite particles behave collectively like bosons and fennions, respectively, so the wavefunction synnnetry properties associated with bosons can be relevant in chemical physics. One prominent example is the treatment of nuclei, which are typically considered as composite particles rather than interacting protons and neutrons. Nuclei with even atomic number tlierefore behave like individual bosons and those with odd atomic number as fennions, a distinction that plays an important role in rotational spectroscopy of polyatomic molecules. [Pg.30]

It is possible to use the quantum states to predict the electronic properties of the melt. A typical procedure is to implement molecular dynamics simulations for the liquid, which pemiit the wavefiinctions to be detemiined at each time step of the simulation. As an example, one can use the eigenpairs for a given atomic configuration to calculate the optical conductivity. The real part of tire conductivity can be expressed as... [Pg.133]

Computational solid-state physics and chemistry are vibrant areas of research. The all-electron methods for high-accuracy electronic stnicture calculations mentioned in section B3.2.3.2 are in active development, and with PAW, an efficient new all-electron method has recently been introduced. Ever more powerfiil computers enable more detailed predictions on systems of increasing size. At the same time, new, more complex materials require methods that are able to describe their large unit cells and diverse atomic make-up. Here, the new orbital-free DFT method may lead the way. More powerful teclmiques are also necessary for the accurate treatment of surfaces and their interaction with atoms and, possibly complex, molecules. Combined with recent progress in embedding theory, these developments make possible increasingly sophisticated predictions of the quantum structural properties of solids and solid surfaces. [Pg.2228]

The molecular electronic polarizability is one of the most important descriptors used in QSPR models. Paradoxically, although it is an electronic property, it is often easier to calculate the polarizability by an additive method (see Section 7.1) than quantum mechanically. Ah-initio and DFT methods need very large basis sets before they give accurate polarizabilities. Accurate molecular polarizabilities are available from semi-empirical MO calculations very easily using a modified version of a simple variational technique proposed by Rivail and co-workers [41]. The molecular electronic polarizability correlates quite strongly with the molecular volume, although there are many cases where both descriptors are useful in QSPR models. [Pg.392]

Ohlaiii a new stable structure as a starting point for a single point, quantum mechanical calculation, which provides a large set ol structural and electronic properties. [Pg.57]

Remarkably, although band stmcture is a quantum mechanical property, once electrons and holes are introduced, theit behavior generally can be described classically even for deep submicrometer geometries. Some allowance for band stmcture may have to be made by choosing different values of effective mass for different appHcations. For example, different effective masses are used in the density of states and conductivity (26). [Pg.345]

The unique electronic properties of CNTs are due to the quantum confinement of electrons normal to the CNT axis. In the radial direction, electrons are... [Pg.108]

Simulation of molecules can be done at the quantum mechanical level, as is necessaiy to determine the electronic properties of molecules, to analyze covalent bonds or simulate bond formation and breaking. However, quantum mechanical simulation is extremely computationally intensive and is too time-consuming for all but the smallest molecular systems. [Pg.812]

Tantalum and niobium are added, in the form of carbides, to cemented carbide compositions used in the production of cutting tools. Pure oxides are widely used in the optical industiy as additives and deposits, and in organic synthesis processes as catalysts and promoters [12, 13]. Binary and more complex oxide compounds based on tantalum and niobium form a huge family of ferroelectric materials that have high Curie temperatures, high dielectric permittivity, and piezoelectric, pyroelectric and non-linear optical properties [14-17]. Compounds of this class are used in the production of energy transformers, quantum electronics, piezoelectrics, acoustics, and so on. Two of... [Pg.1]

Chemical and electrochemical techniques have been applied for the dimensionally controlled fabrication of a wide variety of materials, such as metals, semiconductors, and conductive polymers, within glass, oxide, and polymer matrices (e.g., [135-137]). Topologically complex structures like zeolites have been used also as 3D matrices [138, 139]. Quantum dots/wires of metals and semiconductors can be grown electrochemically in matrices bound on an electrode surface or being modified electrodes themselves. In these processes, the chemical stability of the template in the working environment, its electronic properties, the uniformity and minimal diameter of the pores, and the pore density are critical factors. Typical templates used in electrochemical synthesis are as follows ... [Pg.189]

From cluster to infinite solid a quantum study of the electronic properties of M0O3 A. Rahmouni and C. Barbier 427... [Pg.473]

In conjunction with latest progress in quantum chemistry the availability of vast experimental data makes it possible to anal)rze the character of possible centers of adsorption of particles of various gases as well as type, chemical and electron properties of surface compounds formed during interaction of adsorption particles with adsorption centers. [Pg.93]

Semi-empirical quantum-mechanical methods combine fundamental theoretical treatments of electronic behavior with parameters obtained from experiment to obtain approximate wavefunctions for molecules composed of hundreds of atoms20-22. Originally developed in response to the need to evaluate the electronic properties of organic molecules, especially those possessing unusual structures and/or chemical reactivity in organic chemistry,... [Pg.11]


See other pages where Quantum electronic properties is mentioned: [Pg.301]    [Pg.180]    [Pg.121]    [Pg.130]    [Pg.410]    [Pg.75]    [Pg.192]    [Pg.110]    [Pg.154]    [Pg.159]    [Pg.354]    [Pg.1272]    [Pg.88]    [Pg.383]    [Pg.24]    [Pg.2]    [Pg.163]    [Pg.239]    [Pg.167]    [Pg.169]    [Pg.184]    [Pg.246]    [Pg.427]    [Pg.17]    [Pg.293]    [Pg.294]    [Pg.312]    [Pg.172]    [Pg.187]    [Pg.269]    [Pg.316]    [Pg.391]    [Pg.515]    [Pg.584]    [Pg.90]    [Pg.397]    [Pg.64]   


SEARCH



Electronics property quantum efficiency

Properties quantum

Quantum dots electronic properties

Quantum electronics

© 2024 chempedia.info