Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Quadrupole mass spectrometer detector

Fig. 1.—Schematic view of the photofragment spectrometer. In a high-vacuum chamber a molecular beam is perpendicularly crossed with pulses of polarized light from a laser. Photofragments recoiling upward from the intersection region are monitored by an electron bombardment quadrupole mass spectrometer detector as a function of fragment mass, recoil time (after the laser pulse) over a known flight path, and angle 0 between the electric vector of the laser light and the detection direction. Fig. 1.—Schematic view of the photofragment spectrometer. In a high-vacuum chamber a molecular beam is perpendicularly crossed with pulses of polarized light from a laser. Photofragments recoiling upward from the intersection region are monitored by an electron bombardment quadrupole mass spectrometer detector as a function of fragment mass, recoil time (after the laser pulse) over a known flight path, and angle 0 between the electric vector of the laser light and the detection direction.
Figure 1 is a diagram of the apparatus we use which has the characteristics to do what we have described above, it consists of three principal parts the detonation vacuum chamber, the molecular beam skimmer and differential pumping chambers, and the quadrupole mass spectrometer detector. [Pg.480]

Quadrupole mass spectrometers (mass filters) allow ions at each m/z value to pass through sequentially for example, ions at m/z 100, 101, 102 will pass one after the other through the quadrupole assembly so that first m/z 100 is transmitted, then m/z 101, then m/z 102 (or vice versa), and so on. Therefore, the ion collector (or detector) at the end of the quadrupole unit needs to cover only one point or focus in space (Figure 29.1a), and a complete mass spectrum is recorded over a period of time. The ions arrive at the collector sequentially, and ions are detected in a time domain, not in a spatial domain. [Pg.205]

For IBSCA analysis, standard HV or, better, UHV-equipment with turbomolecular pump and a residual gas pressure of less than 10 Pa is necessary. As is apparent from Fig. 4.46, the optical detection system, which consists of transfer optics, a spectrometer, and a lateral-sensitive detector, is often combined with a quadrupole mass spectrometer for analysis of secondary sputtered particles (ions or post-ionized neutrals). [Pg.242]

Accessibility to Cu sites was determined by temperature programmed desorption of NO (NO TPD), using an experimental setup similar to that used for TPR, except the detector was a quadrupole mass spectrometer (Balzers QMS421) calibrated on standard mixtures. The samples were first activated in air at 673 K, cooled to room temperature in air, and saturated with NO (NO/He 1/99, vol/vol). They were then flushed with He until no NO could be detected in the effluent, and TPD was started up to 873 K at a heating rate of 10 K/min with an helium flow of 50 cm min. The amount of NO held on the surface was determined from the peak area of the TPD curves. [Pg.622]

In the early 1970s, the introduction of the quadrupole mass spectrometer changed the landscape of residue analysis in the coming decades dramatically. The combination of GLC with the mass spectrometer as a detector proved to become the major tool for residue analysis for the next 20 years. [Pg.827]

Fieiure 9-1 Schematic view of (A) the bench-top quadrupole mass spectrometer (Hewlett-Packard) and (B) the ion trap detector (Finnigan MAT). [Pg.485]

Schematic representation of the experimental setup is shown in Fig 1.1. The electrochemical system is coupled on-line to a Quadrupole Mass Spectrometer (Balzers QMS 311 or QMG 112). Volatile substances diffusing through the PTFE membrane enter into a first chamber where a pressure between 10 1 and 10 2 mbar is maintained by means of a turbomolecular pump. In this chamber most of the gases entering in the MS (mainly solvent molecules) are eliminated, a minor part enters in a second chamber where the analyzer is placed. A second turbo molecular pump evacuates this chamber promptly and the pressure can be controlled by changing the aperture between both chambers. Depending on the type of detector used (see below) pressures in the range 10 4-10 5 mbar, (for Faraday Collector, FC), or 10 7-10 9 mbar (for Secondary Electrton Multiplier, SEM) may be established. Schematic representation of the experimental setup is shown in Fig 1.1. The electrochemical system is coupled on-line to a Quadrupole Mass Spectrometer (Balzers QMS 311 or QMG 112). Volatile substances diffusing through the PTFE membrane enter into a first chamber where a pressure between 10 1 and 10 2 mbar is maintained by means of a turbomolecular pump. In this chamber most of the gases entering in the MS (mainly solvent molecules) are eliminated, a minor part enters in a second chamber where the analyzer is placed. A second turbo molecular pump evacuates this chamber promptly and the pressure can be controlled by changing the aperture between both chambers. Depending on the type of detector used (see below) pressures in the range 10 4-10 5 mbar, (for Faraday Collector, FC), or 10 7-10 9 mbar (for Secondary Electrton Multiplier, SEM) may be established.
As with all spectroscopic methods discussed previously, this method is best suited to measurement and elucidation of the characteristics of pure compounds. For this reason, MS is often used as a detector for gas chromatographs. The GC separates the mixture into pure compounds and the MS then analyzes each pure chemical as it exits the column. The most common MS for this application is the quadrupole mass spectrometer. For this reason, it is discussed in Chapters 14 and 15. [Pg.305]

We discussed the fundamentals of mass spectrometry in Chapter 10 and infrared spectrometry in Chapter 8. The quadrupole mass spectrometer and the Fourier transform infrared spectrometer have been adapted to and used with GC equipment as detectors with great success. Gas chromatography-mass spectrometry (GC-MS) and gas chromatography-infrared spectrometry (GC-IR) are very powerful tools for qualitative analysis in GC because not only do they give retention time information, but, due to their inherent speed, they are also able to measure and record the mass spectrum or infrared (IR) spectrum of the individual sample components as they elute from the GC column. It is like taking a photograph of each component as it elutes. See Figure 12.14. Coupled with the computer banks of mass and IR spectra, a component s identity is an easy chore for such a detector. It seems the only real... [Pg.351]

Recently, comparatively inexpensive, very reliable, and stable single quadrupole mass spectrometers have entered the market. These spectrometers can be coupled to GC, LC, and CE separation methods simply by modifying the sampling interfaces. Although these detectors are more expensive than most conventional detectors including the versatile electron capture and diode array absorbance detectors used for GC and LG respectively, the reduction in sample preparation effort and their increased specificity can often rapidly... [Pg.156]

Various mass spectrometer configurations have been used for the detection of explosives, such as ion traps, quadrupoles and time-of flight mass analyzers and combinations as MS/MS systems. The ionization method is usually APCI with corona discharge [24, 25]. An example is given in Figure 20, which shows the schematic diagram of an explosive mass spectrometer detector [25]. It is based on an ion trap mass analyzer, an APCI source with corona discharge and a counter-flow introduction (CFI) system. The direction of the sample gas flow introduced into the ion source is opposite to that of the ion flow produced by the ion source. [Pg.166]

Figure 4.2 The micro-Flow Tube Reaetor/Mass Spectrometer instrument. 1 — heated gas inlet/vacuum feedthrough, 2 — hot zone of flow tube, 3 — multiion source block, 4 — ion guide, 5 — quadrupole mass spectrometer, 6 — ion guides, 7 — reaction cell, 8 — quadrupole mass spectrometer, 9 — daly detector... [Pg.57]

Leak detectors with quadrupole mass spectrometer (ECXDTEC II)... [Pg.119]

INFICON builds leak detectors with quadrupole mass spectrometers to register masses greater than helium. Apart from special cases, these will be refrigerants. These devices thus serve to examine the tightness of refrigeration units, particularly those for refrigerators and air conditioning equipment. [Pg.119]

Bulk amounts of elements were determined by atomic absorption spectrophotometry. The amount of framework A1 was determined by Al MAS NMR. The acidic properties of the metallosilicates were determined by IR and NH3-TPD measurements. Before the IR measurements, the sample wafer was evacuated at 773 K for 1.5 h. In the observation of pyridine adsorbed on metallosilicates, the sample wafer was exposed to pyridine vapor (1.3 kPa) at 423 K for 1 h, then was evacuated at the same temperature for 1 h. All IR spectra were recorded at room temperature. NH3-TPD experiments were performed using a quadrupole mass spectrometer as a detector for ammonia desorbed. The sample zeolite dehydrated at 773 K for 1 h was brought into contact with a 21 kPa of NH3 gas at 423 K for 0.5 h, then evacuated at the same temperature for 1 h. The samples were cooled to room temperature, and the spectra obtained at a heating rate of 10 K min from 314 to 848 K. [Pg.172]

Figure 1. Experimental set-up for performing transient two-photon ionization spectroscopy on metal clusters. The particles were produced in a seeded beam expansion, their flux detected with a Langmuir-Taylor detector (LTD). The pump and probe laser pulses excited and ionized the beam particles. The photoions were size selectively recorded in a quadrupole mass spectrometer (QMS) and detected with a secondary electron multiplier (SEM). The signals were then recorded as a function of delay between pump and probe pulse. Figure 1. Experimental set-up for performing transient two-photon ionization spectroscopy on metal clusters. The particles were produced in a seeded beam expansion, their flux detected with a Langmuir-Taylor detector (LTD). The pump and probe laser pulses excited and ionized the beam particles. The photoions were size selectively recorded in a quadrupole mass spectrometer (QMS) and detected with a secondary electron multiplier (SEM). The signals were then recorded as a function of delay between pump and probe pulse.
Mass Spectrometry. The use of a quadrupole mass spectrometer as a GC detector for nonmethane hydrocarbon analysis has come of age in recent years. Development of capillary columns with low carrier gas flows has greatly facilitated the interfacing of the GC and mass spectrometer (MS). The entire capillary column effluent can be dumped directly into the MS ion source to maximize system sensitivity. GC-MS detection limits are compound-specific but in most cases are similar to those of the flame ionization detector. Quantitation with a mass spectrometer as detector requires individual species calibration curves. However, the NMOC response pattern as represented by a GC-MS total ion chromatogram is usually very similar to the equivalent FID chromatogram. Consequently, the MS detector can... [Pg.294]


See other pages where Quadrupole mass spectrometer detector is mentioned: [Pg.248]    [Pg.272]    [Pg.401]    [Pg.248]    [Pg.272]    [Pg.401]    [Pg.626]    [Pg.89]    [Pg.90]    [Pg.622]    [Pg.1185]    [Pg.389]    [Pg.164]    [Pg.228]    [Pg.335]    [Pg.16]    [Pg.313]    [Pg.58]    [Pg.395]    [Pg.78]    [Pg.501]    [Pg.288]    [Pg.168]    [Pg.34]    [Pg.19]    [Pg.348]    [Pg.191]    [Pg.45]    [Pg.631]    [Pg.23]    [Pg.75]    [Pg.484]    [Pg.492]    [Pg.704]    [Pg.64]   
See also in sourсe #XX -- [ Pg.223 , Pg.224 ]




SEARCH



Leak detectors with quadrupole mass spectrometer

Mass detector

Mass quadrupole

Mass spectrometer detectors

Mass spectrometer quadrupole

Quadrupol mass spectrometers

Quadrupole mass detector

Quadrupole spectrometers

© 2024 chempedia.info