Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyruvic acid catalytic

Catalytic reduction of the nitrile 79 in the presence of semicarbazide affords initially the semicarbazone of 80. Hydrolysis-interchange, for example in the presence of pyruvic acid, gives the aldehyde 80. Condensation with the half ester of malonic acid leads to the acrylic ester 81 the double bond is then removed by means of catalytic reduction (82). Base catalyzed reaction of the... [Pg.112]

The reaction was studied using the iron phosphate catalyst at 230°C with feed rates of pyruvic acid, air, and water = 10.5, 350, and 480 mmol/h. The main products were citraconic anhydride, acetic acid, and CO2. When the amount of catalyst used was lOg, that is, when the contact time is about 2.6 s, the conversion of pyruvic acid reached 95% and the yields of citraconic anhydride and acetic acid were 50 and 28 mol%, respectively the loss was about 17 mol%. The selectivity to citraconic anhydride is clearly lower and that to acetic acid is higher than in the case of the W-based oxide catalysts. However, the catalytic activity was very stable. No clear change in the yield of citraconic anhydride was observed during the reaction for 10 h. [Pg.204]

Summarizing the results obtained by controlled potential electrolysis and polarography, the reaction process for the electrolytic evolution of CO2 was estimated to be as follows the first step was one electron transfer from DMFC in NB to FMN in W as in Eq. (7). The second step was the catalytic reduction of O2 by FMNH as in Eq. (8). The final step was the oxidation of pyruvic acid by the reduction product of O2, H2O2, in W as in Eq. (9), well-known as an oxidative decarboxylation of a-keto acids [43] ... [Pg.499]

A pH-dependent chemoselective catalytic reductive amination of a-keto acids, affording a-amino acids with HCOONH4 in water, was achieved using the complex 31 or its precursor 28 as the catalyst [51]. The formation rates of alanine and lactic acid from pyruvic acid exhibited a maximum value around pH 5 and pH 3, respectively, and therefore, alanine was obtained quite selectively (96%) with a small amount of lactic acid (4%) at pH 5 (Scheme 5.18). A variety of nonpolar, uncharged polar and charged polar amino acids were also synthesized in high yields. [Pg.122]

Reaction of benzo[6]thiophene-2-carboxaldehyde with pyruvic acid yields the keto acid (321), the oxime of which gives a-amino-y-(2-benzo[6]thienyl)butyric acid (322) on catalytic hydrogenation, and j9-(2-benzo[6]thienyl)acrylonitrile on treatment with acetic anhydride the latter yields 8-(2-benzo[6]thienyl)acrylic acid on hydro-... [Pg.349]

The application of arylpyruvic acids 256 in place of pyruvic acid in three-component reactions leads to dramatic changes in the direction of the process. Refluxing of starting compounds for 3 hours of irradiating with microwave at 170°C for 20 minutes in acetic acid yielded 3-hydroxy-4,5-diaryl-l-azolyl-2,5-dihydro-li/-2-pyrrolones 258 [203] (Scheme 3.73). Under ultrasonic irradiation in ethanol with the addition of catalytic amounts of hydrochloric acid or in acetic acid, the reaction proceeds in a different direction with the formation of pyrimidinecarboxylic acids 259. In the case of pyruvic acid the course of the three-component reaction does not so drastically depend on the activation method or solvent type as well as from temperature mode [202]. [Pg.100]

Thus we designed and synthesized a bicyclic pyridoxamine derivative carrying an oriented catalytic side arm (16) [11], Rates for conversion of the ketimine Schiff base into the aldimine, formed with 26 (below) and a-ketovaleric acid, indolepyruvic acid, or pyruvic acid, were enhanced 20-30 times relative to those carried out in the presence of the corresponding pyridoxamine derivatives without the catalytic side arm. With a-ketovaleric acid, 16 underwent transamination to afford D-norvaline with 90% ee. The formation of tryptophan and alanine from indolepyruvic acid and pyruvic acid, respectively, showed a similar preference. A control compound (17), with a propylthio group at the same stereochemical position as the aminothiol side arm in 16, produced a 1.5 1 excess of L-norvaline, in contrast to the large preference for D-amino acids with 16. Therefore, extremely preferential protonation seems to take place on the si face when the catalytic side arm is present as in 16. [Pg.42]

The use of proline methyl ester as a chiral auxiliary in the asymmetric synthesis of alanine is shown on the following page. The idea is to start with 2-oxopropanoic acid (pyruvic acid), which has the correct carbon skeleton, and replace tire oxygen on carbon 2 with an amino group and a hydrogen. This must be done in such a manner as to produce only the S-enantiomer of the amino acid, that is, L-alanine. This is accomplished by first attaching a chiral auxiliary, the methyl ester of L-proline, to the acid. In the critical step of the process, the catalytic hydrogenation, the chirality of the... [Pg.1135]

Ethyl pyruvate can be prepared by esterification of pyruvic acid 3 4 or by catalytic oxidation of ethyl lactate with air or oxygen.5 6 A process has been patented for the oxidation of ethyl lactate by acidified permanganate in dilute aqueous solution.7 Of minor interest are the preparations by pyrolysis of ethyl a-triphenylmethoxypropionate 8 and by the action of di-ethylamine on ethyl wt S0-a,a -dibromoadipate.9... [Pg.62]

This ring closure takes place readily whenever the carbonyl and amino groups occur in the relative positions shown above. Reduction of o-nitro-phenylacetonitrile by stannous chloride produces indole rather than the corresponding amino aldehyde. The synthesis is most useful for the preparation of indole-2-carboxylic acid by reduction of o-nitrophenyl-pyruvic acid with ferrous sulfate and ammonia or with sodium hydrosulfite. The ethyl ester is obtained by a similar reduction with zinc and acetic acid or by catalytic hydrogenation of ethyl o-nitrophenyl-pyruvate over platinum oxide catalyst. ... [Pg.874]

The catalytic hydrogenation of the benzoylformic acid amides of optically active amino acid esters was carried out. When the (5)-amino acid ester was used, the resulting mandelic acid had the (R)-con-figuration. When pyruvic acid amides of optically active benzylic amines were hydrogenated over palladium, optically active lactic acid was obtained in relatively high enantiomeric excess (ee 60%). The... [Pg.144]

In addition to four component condensation, several other applications of chiral primary ferrocenylalkyl amines have been published. Thus, an asymmetric synthesis of alanine was developed (Fig. 4-3la), which forms an imine from 1-ferrocenylethyl amine and pyruvic acid, followed by catalytic reduction (Pd/C) to the amine. Cleavage of the auxiliary occurs readily by 2-mercaptoacetic acid, giving alanine in 61% ee and allowing for recycling of the chiral auxiliary from the sulfur derivative by the HgClj technique [165]. Enantioselective reduction of imines is not limited to pyruvic acid, but has recently also been applied to the imine with acetophenone, although the diastereoisomeric ferrocenylalkyl derivatives of phenylethylamine were obtained only in a ratio of about 2 1 (Fig. 4-31 b). The enantioselective addition of methyl lithium to the imine with benzaldehyde was of the same low selectivity [57]. Recycling of the chiral auxiliary was possible by treatment of the secondary amines with acetic acid/formaldehyde mixture that cleaved the phenylethylamine from the cation and substituted it for acetate. [Pg.210]

A wide range of natural and unnatural monosaccharides has been generated by exploiting the catalytic capacity of aldolases which perform reactions equivalent to nonenzymatic aldol additions [54]. More than 20 aldolases have been identified so far and can be divided into three main groups, accepting either dihydroxyace-tone phosphate (DHAP), acetaldehyde, or pyruvic acid, and phosphoenolpyruvate as nucleophilic methylene component. A common feature is their high stereocontrol in the formation of the new C-C bond. As presented in Scheme 10 all four possible vicinal diols are accessible by selection of the appropriate DHAP-aldo-lase [2, 55], all of which show a distinct preference for the two stereocenters and a broad substrate tolerance for the aldehyde component. [Pg.880]

To date, four main types of catalytic activity have been reported in detail for thermal polyamino acids. These are (with the most studied substrates in parentheses) hydrolyses (p-nitrophenyl acetate, p-nitro-phenyl phosphate, ATP), decarboxylations (OAA, glucuronic acid, pyruvic acid), and aminations (a-ketoglutaric acid, OAA, pyruvic acid, phenylpyruvic acid). The fourth type is a deamination reaction yielding a-ketoglutaric acid (51). For some of the actions of the thermal polymers the products are identified quantitatively, and the kinds of amino acid side chain necessary for activity in the polymer elucidated. In others, products have yet to be fully identified. The activities of thermal polyamino acids are manifest on substrates which range from chemically labile to relatively stable. [Pg.409]

Because of the very high price of ATP, reaction (5.7) must be coupled with a regenerating system, the transfer of phosphate to ADP starting from the enol phosphate of pyruvic acid (an easily accessible and inexpensive phosphate), catalysed by the enzyme pyruvate kinase (reaction (5.8). In the same flask are mixed glucose, phosphoenolpyruvate, hexokinase, pyruvate kinase, and a catalytic quantity of ATP (about 1% mol) and the system produces D-glucose 6-phosphate until the phosphoenolpyruvate runs out. The kinases are easily accessible and, if they are immobilized on an insoluble support (see Section 10.4.1), they are reusable a certain number of times. In this way glucose 6-phosphate can be easily prepared on a 250 g scale (Poliak et al. 1977). [Pg.211]

Pyruvic acid is the simplest homologue of a-keto acids, which were extensively reviewed by Cooper et al.[l], covering various methods for their synthesis elegantly designed for laboratory procedure in organic synthesis, but the applications of catalytic processes are of more recent vintage [2-8]. [Pg.421]

Catalytic hydrogenation of the carbonyl group of benzoylformic acid and pyruvic acid bound to an optically active alcohol [(— )-menthol, (+ )-bomeol] or an optically active amine or amino isobutylester yields chiral mandelic acid and lactic acid °. The... [Pg.266]

In the sequel, we will discuss a generalization of the chelation hypothesis as it applies to reactions other than hydrogenation of Schiff bases of a-keto acids with chiral amines. The catalytic hydrogenation of pyruvic acid amide resulted in the formation of lactcimide in high optical purity (75-99% diastereomeric excess)(] ). This might be explained by the chelate conformation of the substrate-catalyst complex shown in Scheme 8. [Pg.173]

The initial syntheses of Cypridina luciferin and its analogues were performed in low yields by reaction of appropriate 2-aminopyrazines with a-keto acids, followed by reduction with aluminum amalgam or catalytic hydrogenation, and treatment of the product with dicyclohexyl-carbodiimide. For example, 2-amino-5-phenylpyrazine (36) on reaction with pyruvic acid gave the product 37, which was reduced to give an intermediate formulated as 38, which was then cyclized to give the 0x0 compound 39 in 7% yield. It was later discovered that these products could be obtained in high yield in one step by reaction of aminopyrazines such as 36 with a-keto aldehydes such as pyruvaldehyde (MeCOCHO). Condensation of the appropriate aminopyrazine with... [Pg.366]

Besides several diastereoselective heterogeneous catalytic hydrogenations [1-3] only two enantioselective hydrogenation reactions are known the reduction of p-keto-esters with Raney-nickel modified by tartaric acid and of pyruvic acid esters with Pt modified by cinchona alkaloids. Garland and Blaser [4] described the reduction of pyruvic acid ester as a "ligand-accelerated" reaction with the adsorption of the modifier new active sites are generated on the catalyst surface. On these new centers the selective reaction is faster and the increased reaction rate is accompanied by greater enantioselectivities. [Pg.99]

Although thiamine, a thiazolium salt, contains a pyrimine ring, it is the thiazole ring that is responsible for its biological action, thiamine dihosphate being the coenzyme of decarboxylases. The mechanism of the catalytic decarboxylation (e.g. of pyruvic acid to acetaldehyde) was interpreted by Breslow in 1958. The active species is the N-ylide 12 formed from thiamine diphosphate and basic cell components ... [Pg.154]

When o-iodoaniline, pyruvic acid and DABCO are heated to 105°C in DMF in the presence of a catalytic amount of Pd(OAc)2, a product A is obtained in 82% yield after the usual workup. [Pg.506]

Evans, D.A., Tregey, S.W., Burgey, C.S. er a/. (2000) C2-Symmetric copper(II) complexes as chiral Lewis acids. Catalytic enantioselective carbonyl-ene reactions with glyoxylate and pyruvate esters. Journal of the American Chemical Society, 122, 7936-7943. [Pg.88]

Although cinchona alkaloids and especially cinchonidine, Cnd, proved to be the most effective chiral modifier for the catalytic system of Pt-alumina, in the liquid phase enantioselective hydrogenations of the carbonyl group in pyruvic acid esters, efforts to understand the mechanism of action of this catalyst system has continued to the present. The efforts may be divided into two categories finding natural modifiers other than cinchona alkaloids and examining new effective amino alcohols, which are modeled after the structure of known cinchona modifiers. [Pg.186]

The above-mentioned chemical catalytic routes lead to racemic AHA mixtures. For the direct use of LA (or its esters) as a solvent or platform molecule for achiral molecules like acrylic acid and pyruvic acid, stereochemistry does not matter. The properties of the polyester PLA, the major application of LA, however, suffer tremendously if d and l isomers are built in irregularly [28]. This is exemplified by atactic PLA, made from racemic LA, which is an amorphous polymer with low performance and limited application. However, when l- and D-lactic acid are processed separately into their respective isotactic L- and d-PLA, as discovered by Tsuji et al., a stereocomplex is formed upon blending these polymers. This polymer exhibits enhanced mechanical and thermal properties [28, 164]. A productive route to D-Iactic acid is, however, missing today. If the chemocatalytic routes to LA are to become viable, enantiomer resolution of the racemate needs to be performed. Given separation success, a cheap source of o-lactic acid will be unlocked immediately, providing an additional advantage over the fermentation route (cfr. Table 2). [Pg.115]

Ai M (2002) Catalytic activity of iron phosphate doped with a small amount of molybdenum in the oxidative dehydrogenation of lactic acid to pyruvic acid. Appl Catal A 234(1-2) 235-243... [Pg.120]

Hiskey and Northrup (1961) have prepared optically active a-amino acids by successive catalytic hydrogenation and hydro-genolysis, starting with an a-keto acid in the presence of an optically active primary amine. The reaction scheme is illustrated in Fig. 20 for pyruvic acid and amino acid of high optical purity are shown in Table III. [Pg.176]

The enzyme hexokinase, in common with other kinases that catalyse phosphorylation reactions, requires adenosine triphosphate (ATP) as the substrate. The latter is converted to adenosine diphosphate (ADP) during the reaction and must be recycled to avoid the consumption of stoichiometric amounts of the ATP. This can be readily achieved by the introduction of a second enzyme reaction which converts ADP back to ATP. Thus, pyruvate kinase phosphorylates ADP using phosphoenol pyruvate as the phosphate donor, yielding ATP and pyruvic acid. In this way, these phosphorylation reactions can be carried out using a catalytic amount of ATP provided that a stoichiometric quantity of phosphoenol pyruvate is used (Scheme 5.27). [Pg.132]

Evans DA, Kozlowski MC, Bnrgey CS, MacMillan DWC (1997) C2-Symmetric Copper(II) Complexes as Chiral Lewis Acids. Catalytic Enantioselective Aldol Additions of Enolsilanes to Pyruvate Esters. J Am Chem Soc 119 7893... [Pg.224]


See other pages where Pyruvic acid catalytic is mentioned: [Pg.119]    [Pg.187]    [Pg.51]    [Pg.145]    [Pg.212]    [Pg.140]    [Pg.530]    [Pg.165]    [Pg.141]    [Pg.1278]    [Pg.937]    [Pg.212]    [Pg.408]    [Pg.456]    [Pg.91]    [Pg.190]   
See also in sourсe #XX -- [ Pg.145 ]

See also in sourсe #XX -- [ Pg.8 , Pg.145 ]

See also in sourсe #XX -- [ Pg.8 , Pg.145 ]




SEARCH



Pyruvate/pyruvic acid

Pyruvic acid

Pyruvic acid catalytic hydrogenation

© 2024 chempedia.info