Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pyridine 1-oxide reduction

Nicotinamide is an essential part of two important coenzymes nicotinamide adenine dinucleotide (NAD ) and nicotinamide adenine dinucleotide phosphate (NADP ) (Figure 18.19). The reduced forms of these coenzymes are NADH and NADPH. The nieotinamide eoenzymes (also known as pyridine nucleotides) are electron carriers. They play vital roles in a variety of enzyme-catalyzed oxidation-reduction reactions. (NAD is an electron acceptor in oxidative (catabolic) pathways and NADPH is an electron donor in reductive (biosynthetic) pathways.) These reactions involve direct transfer of hydride anion either to NAD(P) or from NAD(P)H. The enzymes that facilitate such... [Pg.588]

Reduced nicotinamide-adenine dinucleotide (NADH) plays a vital role in the reduction of oxygen in the respiratory chain [139]. The biological activity of NADH and oxidized nicotinamideadenine dinucleotide (NAD ) is based on the ability of the nicotinamide group to undergo reversible oxidation-reduction reactions, where a hydride equivalent transfers between a pyridine nucleus in the coenzymes and a substrate (Scheme 29a). The prototype of the reaction is formulated by a simple process where a hydride equivalent transfers from an allylic position to an unsaturated bond (Scheme 29b). No bonds form between the n bonds where electrons delocalize or where the frontier orbitals localize. The simplified formula can be compared with the ene reaction of propene (Scheme 29c), where a bond forms between the n bonds. [Pg.50]

The first report of the SERS spectrum of a species adsorbed at the electrode/ electrolyte interface was by Fleischman et al (1974) and concerned pyridine on silver. The Raman spectrum of the adsorbed pyridine was only observed after repeated oxidation/reduction cycles of the silver electrode, which resulted in a roughened surface. Initially, it was thought that the 106-fold enhancement in emission intensity arose as a result of the substantially increased surface area of the Ag and thus depended simply on the amount of adsorbate. However, Jeanmarie and Van Duync (1977) and Albrecht and Creighton (1977), independently reported that only a single oxidation/reduction cycle was required to produce an intense Raman spectrum and calculations showed that the increase in surface area could not possibly be sufficient to give the observed enhancement. [Pg.118]

Nitrosoarenes are readily formed by the oxidation of primary N-hydroxy arylamines and several mechanisms appear to be involved. These include 1) the metal-catalyzed oxidation/reduction to nitrosoarenes, azoxyarenes and arylamines (144) 2) the 02-dependent, metal-catalyzed oxidation to nitrosoarenes (145) 3) the 02-dependent, hemoglobin-mediated co-oxidation to nitrosoarenes and methe-moglobin (146) and 4) the 0 2-dependent conversion of N-hydroxy arylamines to nitrosoarenes, nitrosophenols and nitroarenes (147,148). Each of these processes can involve intermediate nitroxide radicals, superoxide anion radicals, hydrogen peroxide and hydroxyl radicals, all of which have been observed in model systems (149,151). Although these radicals are electrophilic and have been suggested to result in DNA damage (151,152), a causal relationship has not yet been established. Nitrosoarenes, on the other hand, are readily formed in in vitro metabolic incubations (2,153) and have been shown to react covalently with lipids (154), proteins (28,155) and GSH (17,156-159). Nitrosoarenes are also readily reduced to N-hydroxy arylamines by ascorbic acid (17,160) and by reduced pyridine nucleotides (9,161). [Pg.360]

IV. The Chemical Mechanism of Pyridine N-oxide Reduction A. The Initial Step... [Pg.168]

For purposes of pyridine N-oxide reduction, it suffices to say that many examples of Eq. (14) have been explored, including those in which PR3 is displaced contra-thermodynamically (p/TM may be ca. 2) by PyO. Invoking such a step in the catalytic cycle is therefore perfectly acceptable. Actually, the ligand displacement chemistry is a rich and fascinating area in its own right, and for that reason it will be explored independently in Section V. [Pg.168]

Indicine IV-oxide (169) (Scheme 36) is a clinically important pyrrolizidine alkaloid being used in the treatment of neoplasms. The compound is an attractive drug candidate because it does not have the acute toxicity observed in other pyrrolizidine alkaloids. Indicine IV-oxide apparently demonstrates increased biological activity and toxicity after reduction to the tertiary amine. Duffel and Gillespie (90) demonstrated that horseradish peroxidase catalyzes the reduction of indicine IV-oxide to indicine in an anaerobic reaction requiring a reduced pyridine nucleotide (either NADH or NADPH) and a flavin coenzyme (FMN or FAD). Rat liver microsomes and the 100,000 x g supernatant fraction also catalyze the reduction of the IV-oxide, and cofactor requirements and inhibition characteristics with these enzyme systems are similar to those exhibited by horseradish peroxidase. Sodium azide inhibited the TV-oxide reduction reaction, while aminotriazole did not. With rat liver microsomes, IV-octylamine decreased... [Pg.397]

Flavoprotein dehydrogenases usually accept electrons from reduced pyridine nucleotides and donate them to a suitable electron acceptor. The oxidation-reduction midpoint potential of the FAD of the oxidase has been determined by ESR spectroscopy and shown to be -280 mV. The NADP+/ NADPH redox potential is -320 mV and that of the cytochrome b is -245 mV hence, the flavin is thermodynamically capable of accepting electrons from NADPH and transferring them to cytochrome b. As two electrons are transferred from NADPH, although O2 reduction requires only one electron, the scheme of electron transfer shown in Figure 5.8 has been proposed by Cross and Jones (1991). [Pg.162]

Experimentally it has been found that primary and secondary amines react by solvolysis, while only the tertiary amines generally produce reduction, if reduction is observed. It thus seemed appropriate to study the reaction of niobium (V) halides with pyridine, where proton dissociation need not be considered and any reaction would necessarily lead to a simple adduct of pyridine or reduction of the metal halide. In this work, reduction of the niobium(V) halides was observed, and the reaction products were characterized. Elucidation of the pyridine oxidation products has permitted an interpretation of the reaction mechanism in terms of the two-electron reduction of niobium(V) by the pyridine molecule. [Pg.248]

Oxidation-Reduction Titrations. The extent of reduction resulting from reaction of niobium (V) chloride and bromide with pyridine was determined by indirect titration of crude reaction mixtures with standard ammonium tetrasulfato-cerate(IV) solution. Samples were stirred overnight in a stoppered flask with an excess of iron (III) ammonium sulfate. Any iron (II) formed by reaction with the niobium complex mixture was then titrated with the standard tetrasulfato-cerate(IV) solution using ferroin as indicator. Results of these determinations are given in Table III. [Pg.250]

From these observations it was concluded that the major products of the reduction of niobium(V) chloride with anhydrous pyridine were tetrachlorodi-(pyridine)niobium(IV) and l-(4-pyridyl)pyridinium dichloride. Oxidation-reduction titrations indicated that this reduction accounted for approximately 70% of the reaction products. In view of the rapid reaction of tantalum(V) halides with pyridine to form 1 to 1 adducts, it was assumed that the remaining 30% of niobium (V) which was not reduced was present in the reaction mixture as pentachloro(pyridine)niobium(V). On this basis the following over-all reaction is proposed ... [Pg.256]

Similarly, it was concluded that in the reduction reaction of niobium(V) bromide with pyridine the major products were tetrabromodi (pyridine )niobium-(IV), pyridinium bromide, and l-(4-pyridyl) pyridinium bromide. Oxidation-reduction titrations indicated approximately 90% reduction. The remaining 10% of niobium was assumed to be present as pentabromo(pyridine)niobium(V). The over-all reaction was indicated to be ... [Pg.256]

Proposed Mechanisms for Reduction Reactions. Any mechanism proposed for the reduction of niobium(V) halides with pyridine must incorporate the necessary two-electron oxidation-reduction step required for the oxidation of pyridine to l-(4-pyridyl) pyridinium ion. In view of the known acid properties of the niobium(V) halides and the rapid reaction of the tantalum (V) halides to give 1 to 1 pyridine adducts, the mechanism must also include the initial coordination of pyridine to the niobium(V) halide. The reduction might then proceed through the steps shown opposite. [Pg.256]

The formation of a bridged, activated intermediate such as V is a well known hypothesis for explanation of many electron exchange and oxidation-reduction reactions (14). The two-electron reduction of niobium by pyridine makes this step necessary, since niobium (III) must be formed only as an intermediate. No evidence was found for the presence of niobium (III) in the final products. If... [Pg.257]

The catalytic significance of this observation is not known since no deviation from a two-electron Nemst plot is observed with NADH as reductant and no kinetic studies have been done to compare the rate of the NAD -facilitated comproportionation reaction with the rate of catalytic turnover. No comparable studies on the effect of NADP on the oxidation-reduction potential of ferredoxin-NADP reductase have been, to our knowledge, published. Inasmuch as the physiological role for this enzyme is reduction of the pyridine nucleotide rather than its oxidation, the potential of the enzyme should be significantly lower than that of the pyridine nucleotide couple. Indeed, a value of —445 mV has been determined for this flavoenzyme with the driving force for its reduction being due to a decrease of 90 mV in the one-electron potential of the ferredoxin reductant. This increase... [Pg.127]

Two vitamins, nicotinamide and pyridoxine (vitamin B6), are pyridine derivatives. Nicotinamide participates in two coenzymes, coenzyme I (65 R = H) which is known variously as nicotinamide adenine dinucleotide (NAD) or diphosphopyridine nucleotide (DPN), and coenzyme II (65 R = P03H2) also called triphosphopyridine nucleotide (TPN) or nicotinamide adenine dinucleotide phosphate (NADP). These are involved in many oxidation-reduction processes, the quaternized pyridine system acting as a hydrogen acceptor and hydrogen donor. Deficiency of nicotinamide causes pellagra, a disease associated with an inadequately supplemented maize diet. Nicotinic acid (niacin) and its amide are... [Pg.155]

The oxidation-reduction potential of a pyridine nucleotide coenzyme system is determined by the standard redox potential for the free coenzyme (Table 6-8) together with the ratio of concentrations of oxidized to reduced coenzyme ([NAD+] / [NADH], Eq. 6-64). If these concentrations are known, a redox... [Pg.766]

Why are there two pyridine nucleotides, NAD+ and NADP+, differing only in the presence or absence of an extra phosphate group One important answer is that they are members of two different oxidation-reduction systems, both based on nicotinamide but functionally independent. The experimentally measured ratio [NAD+] / [NADH] is much higher than the ratio [NADP+] / [NADPH]. Thus, these two coenzyme systems also can operate within a cell at different redox potentials. A related generalization that holds much of the time is that NAD+ is usually involved in pathways of catabolism, where it functions as an oxidant, while NADPH is more often used as a reducing agent in biosynthetic processes. See Chapter 17, Section I for further discussion. [Pg.767]

The oxidation-reduction potentials of metal ions differ in different solvents due chiefly to differences in the strength of coordination of the solvents to the metal ions. Thus, Schaap and coworkers,33 who measured reduction potentials polarographically in anhydrous ethylenediamine, found the order of half-wave potentials to be Cd2+ > Pb2+ > Cu2+ - Cu+ > Ti+, whereas, in aqueous solution, the order is Cd2+ > Ti+ > Pb2+ > Cu2+ -> Cu+. Oxidation—reduction potentials have been measured in a great variety of non-aqueous solvents, both protonic and non-protonic. Among the former are liquid ammonia and concentrated sulfuric acid.34 Among the latter are acetonitrile, cyanopropane, cyanobenzene, dimethyl sulfoxide, methylene chloride, acetone, tet-rahydrofuran, dimethylformamide and pyridine.34... [Pg.27]


See other pages where Pyridine 1-oxide reduction is mentioned: [Pg.792]    [Pg.285]    [Pg.385]    [Pg.115]    [Pg.152]    [Pg.341]    [Pg.157]    [Pg.157]    [Pg.166]    [Pg.349]    [Pg.13]    [Pg.16]    [Pg.165]    [Pg.1202]    [Pg.929]    [Pg.247]    [Pg.107]    [Pg.123]    [Pg.913]    [Pg.462]    [Pg.377]    [Pg.708]    [Pg.764]   
See also in sourсe #XX -- [ Pg.380 ]




SEARCH



2- pyridine, oxidative

Oxidation-reduction potentials of pyridine nucleotide system

Pyridine 1-oxides—continued reduction

Pyridine N-oxides reduction

Pyridine oxide, oxidant

Pyridine reduction

Pyridines reductive

Reduction of pyridine N-oxides

The Chemical Mechanism of Pyridine N-oxide Reduction

© 2024 chempedia.info