Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protons from carbon dioxide

CAs are ubiquitous metalloenzymes that catalyze the reversible synthesis of bicarbonate ion and proton from carbon dioxide and water. This family includes 15 isoenzymes (1-XlV, V further subclassified as VA and VB) endowed with different molecular features, cellular localization, distribution in organs and tissues, and kinetic properties. It has been demonstrated that the dysfunction of these enzymes is related to different pathologies such as cancer (CAs Vll, IX, XII), neurodegeneration (CA VIII), obesity (CAs VA and VB), and sterility (CA XIII) [36]. Based on the knowledge that coumarin derivatives are CA inhibitors [37], a library of suflbcoumarin derivatives 21 bearing a triazole moiety was synthesized (Scheme 2.3). These compounds 21 (R = Ph) were found to... [Pg.30]

The electrons undergo the equivalent of a partial oxidation process ia a dark reaction to a positive potential of +0.4 V, and Photosystem I then raises the potential of the electrons to as high as —0.7 V. Under normal photosynthesis conditions, these electrons reduce tryphosphopyridine-nucleotide (TPN) to TPNH, which reduces carbon dioxide to organic plant material. In the biophotolysis of water, these electrons are diverted from carbon dioxide to a microbial hydrogenase for reduction of protons to hydrogen ... [Pg.19]

The fuel solution is fed into the anode side channel. Methanol reacts at the anode and releases electrons, protons, and carbon dioxide. At the cathode, molecnlar oxygen reacts with proton being transported throngh the PEM (Polymer Electrolyte Membrane) from the anode and prodnces water. The electrons travel throngh the external circnit to the cathode. Power generation is performed by the above oxidation-rednction reaction principles. In order to realize micro-mini power sonrces, large nnmbers of DMFC shonld be integrated serially on a substrate. The structure of the proposed DMFC is suitable for this application. [Pg.51]

The first step in the generation of electricity from MFCs is the exoelectrogen oxidizing an organic substrate in the anode chamber (Fig. 9.1). This reaction produces electrons as well as protons and carbon dioxide. While the electrons travel to the anode and through the circuit to the cathode, the protons diffuse through a chamber separator (optional) to the cathode. At the... [Pg.227]

Electrocatalysis by transition metal complexes is elegantly illustrated by the work of DuBois and colleagues.2 In the absence of CO2, the palladium (II) complex undergoes two-electron reduction, but when CO2 is present, the one-electron reduction product binds CO2 (DMF as solvent) (Figure 5.9). With added acid, carbon monoxide is produced catalytically from carbon dioxide. This chemistry likely involves the protonated carbon dioxide adduct (hydroxycarbonyl complex) shown in Figures 5.9 and 5.10. Catalytic turnover numbers greater than 100 have been reported for this and related compounds. Some hydrogen is produced in parallel, evidently via a hydride complex. [Pg.102]

These equations tell us that the reverse process proton transfer from acids to bicarbon ate to form carbon dioxide will be favorable when of the acid exceeds 4 3 X 10 (pK, < 6 4) Among compounds containing carbon hydrogen and oxygen only car boxylic acids are acidic enough to meet this requirement They dissolve m aqueous sodium bicarbonate with the evolution of carbon dioxide This behavior is the basis of a qualitative test for carboxylic acids... [Pg.805]

If the initiation reaction is much faster than the propagation reaction, then all chains start to grow at the same time. Because there is no inherent termination step, the statistical distribution of chain lengths is very narrow. The average molecular weight is calculated from the mole ratio of monomer-to-initiator sites. Chain termination is usually accompHshed by adding proton donors, eg, water or alcohols, or electrophiles such as carbon dioxide. [Pg.517]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

The Grignard reagents prepared from the activated magnesium appear to react normally with electrophiles. Thus reactions with proton donors, ketones, and carbon dioxide afford hydrocarbons, alcohols, and carboxylic acids, respectively. The reductive coupling of ketones to pinacols had also been accomplished with the activated magnesium. ... [Pg.47]

The electrocatalytic oxidation of methanol has been widely investigated for exploitation in the so-called direct methanol fuel cell (DMFC). The most likely type of DMFC to be commercialized in the near future seems to be the polymer electrolyte membrane DMFC using proton exchange membrane, a special form of low-temperature fuel cell based on PEM technology. In this cell, methanol (a liquid fuel available at low cost, easily handled, stored, and transported) is dissolved in an acid electrolyte and burned directly by air to carbon dioxide. The prominence of the DMFCs with respect to safety, simple device fabrication, and low cost has rendered them promising candidates for applications ranging from portable power sources to secondary cells for prospective electric vehicles. Notwithstanding, DMFCs were... [Pg.317]

In addition to the polymeric rhodium catalysts previously discussed, monomeric rhodium systems prepared from [Rh(CO)2Cl]2 by addition of strong acid (HC1 or HBF4) and Nal in glacial acetic acid have also been shown to be active homogeneous shift catalysts (80). The active species is thought to be an anionic iodorhodium carbonyl species, dihydrogen being produced by the reduction of protons with concomitant oxidation of Rh(I) to Rh(III) [Eq. (18)], and carbon dioxide by nucleophilic attack of water on a Rh(III)-coordinated carbonyl [Eq. (19)]. [Pg.85]

Most aliphatic ketones can lose a proton from either of two carbon atoms adjacent to the carbonyl. The question of which of the possible carbanions or salts is the effective reagent in a given base-catalyzed reaction depends on the nature of the electrophilic reagent with which the ion subsequently reacts. Thus alkyl methyl ketones lose a primary proton in their reactions with alkali and iodine, alkali and an aldehyde, or alkali and carbon dioxide, but lose a secondary proton in certain other reactions. [Pg.221]

Still another possibility in the base-catalyzed reactions of carbonyl compounds is alkylation or similar reaction at the oxygen atom. This is the predominant reaction of phenoxide ion, of course, but for enolates with less resonance stabilization it is exceptional and requires special conditions. Even phenolates react at carbon when the reagent is carbon dioxide, but this may be due merely to the instability of the alternative carbonic half ester. The association of enolate ions with a proton is evidently not very different from the association with metallic cations. Although the equilibrium mixture is about 92 % ketone, the sodium derivative of acetoacetic ester reacts with acetic acid in cold petroleum ether to give the enol. The Perkin ring closure reaction, which depends on C-alkylation, gives the alternative O-alkylation only when it is applied to the synthesis of a four membered ring ... [Pg.226]

Hydrogen transfer reactions are highly selective and usually no side products are formed. However, a major problem is that such reactions are in redox equilibrium and high TOFs can often only be reached when the equilibria involved are shifted towards the product side. As stated above, this can be achieved by adding an excess of the hydrogen donor. (For a comparison, see Table 20.2, entry 8 and Table 20.7, entry 3, in which a 10-fold increase in TOF, from 6 to 60, can be observed for the reaction catalyzed by neodymium isopropoxide upon changing the amount of hydrogen donor from an equimolar amount to a solvent. Removal of the oxidation product by distillation also increases the reaction rate. When formic acid (49) is employed, the reduction is a truly irreversible reaction [82]. This acid is mainly used for the reduction of C-C double bonds. As the proton and the hydride are removed from the acid, carbon dioxide is formed, which leaves the reaction mixture. Typically, the reaction is performed in an azeotropic mixture of formic acid and triethylamine in the molar ratio 5 2 [83],... [Pg.600]

More complicated reactions that combine competition between first- and second-order reactions with ECE-DISP processes are treated in detail in Section 6.2.8. The results of these theoretical treatments are used to analyze the mechanism of carbon dioxide reduction (Section 2.5.4) and the question of Fl-atom transfer vs. electron + proton transfer (Section 2.5.5). A treatment very similar to the latter case has also been used to treat the preparative-scale results in electrochemically triggered SrnI substitution reactions (Section 2.5.6). From this large range of treated reaction schemes and experimental illustrations, one may address with little adaptation any type of reaction scheme that associates electrode electron transfers and homogeneous reactions. [Pg.139]


See other pages where Protons from carbon dioxide is mentioned: [Pg.35]    [Pg.357]    [Pg.362]    [Pg.656]    [Pg.467]    [Pg.208]    [Pg.308]    [Pg.179]    [Pg.52]    [Pg.917]    [Pg.183]    [Pg.141]    [Pg.288]    [Pg.99]    [Pg.389]    [Pg.250]    [Pg.29]    [Pg.28]    [Pg.82]    [Pg.25]    [Pg.488]    [Pg.276]    [Pg.37]    [Pg.305]    [Pg.85]    [Pg.198]    [Pg.44]    [Pg.308]    [Pg.205]    [Pg.45]    [Pg.297]    [Pg.106]    [Pg.242]    [Pg.103]   
See also in sourсe #XX -- [ Pg.14 ]




SEARCH



Carbon dioxide proton production from

Carbon dioxide protonation

From carbon dioxide

Protonated carbon dioxide

© 2024 chempedia.info