Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Proteins basic principles

For even larger proteins, protein aggregates, protein complexes, or proteins embedded in a hpid bUayer, where the molecular tumbling is further reduced, solid-state NMR spectroscopy may become a viable alternative for stracture elucidation or even high-resolution structure determination. In the chapter Solid-State NMR Spectroscopy of Proteins , basic principles of biological solid-state NMR spectroscopy as well as fundamental techniques for isotope labeling, sample preparation, and some selected applications are reviewed. In addition, recent developments in polarization enhancement by DNP for solid-state NMR spectroscopy are outlined. [Pg.211]

Ithough knowledge-based potentials are most popular, it is also possible to use other types potential function. Some of these are more firmly rooted in the fundamental physics of iteratomic interactions whereas others do not necessarily have any physical interpretation all but are able to discriminate the correct fold from decoy structures. These decoy ructures are generated so as to satisfy the basic principles of protein structure such as a ose-packed, hydrophobic core [Park and Levitt 1996]. The fold library is also clearly nportant in threading. For practical purposes the library should obviously not be too irge, but it should be as representative of the different protein folds as possible. To erive a fold database one would typically first use a relatively fast sequence comparison lethod in conjunction with cluster analysis to identify families of homologues, which are ssumed to have the same fold. A sequence identity threshold of about 30% is commonly... [Pg.562]

The first six chapters of this book deal with the basic principles of protein structure as we understand them today, and examples of the different major classes of protein structures are presented. Chapter 7 contains a brief discussion on DNA structures with emphasis on recognition by proteins of specific nucleotide sequences. The remaining chapters illustrate how during evolution different structural solutions have been selected to fulfill particular functions. [Pg.4]

Two basic principles govern the arrangement of protein subunits within the shells of spherical viruses. The first is specificity subunits must recognize each other with precision to form an exact interface of noncovalent interactions because virus particles assemble spontaneously from their individual components. The second principle is genetic economy the shell is built up from many copies of a few kinds of subunits. These principles together imply symmetry specific, repeated bonding patterns of identical building blocks lead to a symmetric final structure. [Pg.327]

In this chapter we describe the basic principles involved in the controlled production and modification of two-dimensional protein crystals. These are synthesized in nature as the outermost cell surface layer (S-layer) of prokaryotic organisms and have been successfully applied as basic building blocks in a biomolecular construction kit. Most importantly, the constituent subunits of the S-layer lattices have the capability to recrystallize into iso-porous closed monolayers in suspension, at liquid-surface interfaces, on lipid films, on liposomes, and on solid supports (e.g., silicon wafers, metals, and polymers). The self-assembled monomolecular lattices have been utilized for the immobilization of functional biomolecules in an ordered fashion and for their controlled confinement in defined areas of nanometer dimension. Thus, S-layers fulfill key requirements for the development of new supramolecular materials and enable the design of a broad spectrum of nanoscale devices, as required in molecular nanotechnology, nanobiotechnology, and biomimetics [1-3]. [Pg.333]

Figure 6.17 Schematic representation of the basic principles of metal chelate affinity chromatography. Certain proteins are retained on the column via the formation of coordinate bonds with the immobilized metal ion (a). The actual structure of the most commonly used metal chelator, iminodiacetic acid, is presented in (b)... Figure 6.17 Schematic representation of the basic principles of metal chelate affinity chromatography. Certain proteins are retained on the column via the formation of coordinate bonds with the immobilized metal ion (a). The actual structure of the most commonly used metal chelator, iminodiacetic acid, is presented in (b)...
Ras and its relatives are subjects of intensive investigations by biological, biochemical, biophysical, and medical studies. Within just one decade more than 17,000 articles (Medline, 1966-2000) deal with function and properties of this protein. Structural and functional data, based on Ras as a prototype, have provided insight into the basic principles of GTP-binding proteins, their activation, de-activation, and signal transmission. [Pg.108]

Despite some refinements in the methods, the basic principles and protocols of gel electrophoresis have not changed appreciably since their introduction. Proteins are introduced into a gel matrix and separated by the combined effects of an electrical field, buffer ions, and the gel itself, which acts as a protein sieve. At the completion of the electrophoresis run, separated proteins in the gel are stained to make them visible, then analyzed qualitatively or quantitatively. The topic has been covered in numerous texts, methods articles, and reviews.1-11 In addition, apparatus and reagents for analytical and preparative gel electrophoresis are available from several suppliers. [Pg.114]

There are some basic principles for protein biosynthesis... [Pg.171]

The basic principle behind the ChIP method is relatively simple It is based on the selective enrichment of a chromatin fraction containing a specific antigen (e.g. transcription factors, DNA binding proteins, modified histones, etc.) by an immunoprecipitation step. Specific (important, see below ) antibodies that recognize a protein of interest or the modified form of a protein can be used to determine the relative abundance of it within DNA regions. [Pg.141]

An alternative to the synthesis of proteins by classical fragment synthesis in solution or by solid-phase synthesis on a support is the use of enzyme-catalyzed condensation of amino acids or peptides. This possibility was first demonstrated in 1938 91 with the synthesis of poorly soluble benzoyl-leucyl-leucine anilide by papain catalysis. After many years, this approach was extended to the preparation of peptide hormones such as Leu-enkephalin 92 and dynorphin(l -8).[93 This was made possible by the use of highly purified enzymes and by careful control of reaction conditions. The basic principles of protease-catalyzed peptide bond formation have been discussed.194 ... [Pg.28]

The structure and function of enzymes is determined by both the amino acid sequence and the surrounding solvent. The overall stability of proteins is characterized by a subtle balance of into- and inter-molecular interactions. The basic principle of the structure (and of the stability) of the proteins is related to the nature of its normal enviromnent for (water) soluble globular proteins this is the minimization of the hydrophobic surface area, whereas the contrary is the case for membrane proteins (Jaenicke, 1991). [Pg.327]

The scope of the use of mass spectrometry in the protein analysis has grown enormously in the past few decades. MS has become an important analytical tool in biological and biochemical research. Its speed, accuracy and sensitivity are unmatched by conventional analytical techniques. The variety of ionization methods permits the analysis of peptide or protein molecules from below 500 Da to as big as 300 Da (Biemann 1990 Lahm and Langen 2000). Basically, a mass spectrometer is an instrument that produces ions and separates them in the gas phase according to their mass-to-charge ratio (m/z). The basic principle of operation is to introduce sample to volatilization and ionization source, and then the molecular fragments from the ionization of the sample are detected by various kinds of detector and the data are analyzed with computer software. [Pg.151]


See other pages where Proteins basic principles is mentioned: [Pg.177]    [Pg.529]    [Pg.4]    [Pg.914]    [Pg.138]    [Pg.393]    [Pg.341]    [Pg.228]    [Pg.97]    [Pg.14]    [Pg.423]    [Pg.992]    [Pg.350]    [Pg.496]    [Pg.141]    [Pg.225]    [Pg.149]    [Pg.369]    [Pg.94]    [Pg.190]    [Pg.294]    [Pg.294]    [Pg.188]    [Pg.61]    [Pg.227]    [Pg.113]    [Pg.190]    [Pg.188]    [Pg.118]    [Pg.53]    [Pg.56]    [Pg.333]    [Pg.512]    [Pg.4]    [Pg.108]   


SEARCH



Basic Principles and Methods of Protein Crystallography

Basic Principles of Protein Structure

Proteins principle

Proteins structure, basic principles

Some Basic Principles of Protein Structure

© 2024 chempedia.info