Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein synthesis prokaryotic translation

Prokaryotic ribosomes attach to the nascent mRNA while it is still being transcribed. Because transcription and translation are coupled, prokaryotic mRNAs undergo little modification and processing before being used as templates for protein synthesis. Prokaryotic tRNA and rRNA are transcribed in units larger than those ultimately used and must be processed to generate the functional molecules. The processing of these and the eukaryotic primary transcripts, almost all of which require modification, is discussed in a later section. [Pg.319]

The protein synthesis machinery reads the RNA template starting from the 5 end (the end made first) and makes proteins beginning with the amino terminus. These directionalities are set up so that in prokaryotes, protein synthesis can begin even before the RNA synthesis is complete. Simultaneous transcription-translation can t happen in eukaryotic cells because the nuclear membrane separates the ribosome from the nucleus. [Pg.55]

Protein synthesis in prokaryotes is in principle the same as in eukaryotes. However, as the process is simpler and has been better studied in prokaryotes, the details involved in translation are discussed here and on p. 252 using the example of the bacterium Escherichia coli. [Pg.250]

Protein synthesis inhibition—prokaryotes Protein synthesis inhibition—eukaryotes Mistranslation on ribosomes Nonsense mutation suppression DNA translation Phenotypic suppression Membrane leakiness Nucleic acid binding/precipitation... [Pg.4]

The selection of transformed chloroplasts usually involves the use of an antibiotic resistance marker. Spectinomycin is used most routinely because of the high specificity it displays as a prokaryotic translational inhibitor as well as the relatively low side effects it exerts on plants. The bacterial aminoglycoside 3 -adenyltransferase gene (ciadA) confers resistance to both streptomycin and spectinomycin. The aadA protein catalyzes the covalent transfer of an adenosine monophosphate (AMP) residue from adenosine triphosphate (ATP) to spectinomycin, thereby converting the antibiotic into an inactive form that no longer inhibits protein synthesis for prokaryotic 70S ribosomes that are present in the chloroplast. [Pg.62]

The pathway of protein synthesis translates the three-letter alphabet of nucleotide sequences on mRNA into the twenty-letter alphabet of amino acids that constitute proteins. The mRNA is translated from its 5 -end to its 3 -end, producing a protein synthesized from its amino-terminal end to its carboxyl-terminal end. Prokaryotic mRNAs often have several coding regions, that is, they are polycistronic (see p. 420). Each coding region has its own initiation codon and produces a separate species of polypeptide. In contrast, each eukaryotic mRNA codes for only one polypeptide chain, that is, it is monocistronic. The process of translation is divided into three separate steps initiation, elongation, and termination. The polypeptide chains produced may be modified by posttranslational modification. Eukaryotic protein synthesis resembles that of prokaryotes in most details. [Note Individual differences are mentioned in the text.]... [Pg.435]

Initiation of protein synthesis involves the assembly of the components of the translation system before peptide bond formation occurs. These components include the two ribosomal subunits, the mRNA to be translated, the aminoacyl-tRNA specified by the first codon in the message, GTP (which provides energy for the process), and initiation factors that facilitate the assembly of this initiation complex (see Figure 31.13). [Note In prokaryotes, three initiation factors are known (IF-1, IF-2, and IF-3), whereas in eukary- otes, there are at least ten (designated elF to indicate eukaryotic origin).] There are two mechanisms by which the ribosome recognizes the nucleotide sequence that initiates translation ... [Pg.435]

Steps in prokaryotic protein synthesis (translation). (Continued on the next page)... [Pg.438]

One of the major demands of protein synthesis is to select the appropriate initiator codon, generally AUG, for translation. This is accomplished at the level of the ribosome by the binding of the small ribosomal subunit to mRNA. The recognition of the appropriate start codon occurs in different ways in prokaryotes and eukaryotes. [Pg.746]

At the conclusion of the initiation process, the ribosome is poised to translate the reading frame associated with the initiator codon. The translation of the contiguous codons in mRNA is accomplished by the sequential repetition of three reactions with each amino acid. These three reactions of elongation are similar in both prokaryotic and eukaryotic systems two of them require nonribosomal proteins known as elongation factors (EF). Interestingly, the actual formation of the peptide bond does not require a factor and is the only reaction of protein synthesis catalyzed by the ribosome itself. [Pg.748]

There are also inhibitors that affect enzyme synthesis. Inhibitors of transcription (e.g., dibromothymoquinone [DBMIB]) and inhibitors of translation (e.g., cyclo-heximide [CHX]) are available but these are not specific to particular enzymes. In addition, because protein synthesis takes place within the chloroplast and mitochondrion in eukaryotes, prokaryotic protein synthesis inhibitors (e.g., chloramphenicol [CAP]) may be necessary to distinguish prokaryotic versus eukaryotic activity (e.g., Segovia and Berges, 2005). [Pg.1401]

Figure 28.15. Transcription and Translation. These two processes are closely coupled in prokaryotes, whereas they are spacially and temporally separate in eukaryotes. (A) In prokaryotes, the primary transcript serves as mRNA and is used immediately as the template for protein synthesis. (B) In eukaryotes, mRNA precursors are processed and spliced in the nucleus before being transported to the cytosol for translation into protein. [After J. Darnell, H. Lodish, and D. Baltimore. Molecular Cell Biology, 2d ed. (Scientific American Books, 1990), p. 230.]... Figure 28.15. Transcription and Translation. These two processes are closely coupled in prokaryotes, whereas they are spacially and temporally separate in eukaryotes. (A) In prokaryotes, the primary transcript serves as mRNA and is used immediately as the template for protein synthesis. (B) In eukaryotes, mRNA precursors are processed and spliced in the nucleus before being transported to the cytosol for translation into protein. [After J. Darnell, H. Lodish, and D. Baltimore. Molecular Cell Biology, 2d ed. (Scientific American Books, 1990), p. 230.]...
Eukaryotic Protein Synthesis Differs from Prokaryotic Protein Synthesis Primarily in Translation Initiation... [Pg.1234]

The first success was demonstration in 1994, with the report of a large, diverse library of decapeptides displayed and selected while associated with E. coli S30 polysomes and RNA.262 The key to Dower s success was the application of natural product antibiotics that were known to interfere with protein synthesis by stabilizing the ribosome-mRNA-protein complex. Thus, rifampicin and chloramphenicol (for prokaryotic system) or cycloheximide (for eukaryotic system) were used.2 3 Because these antibiotics halt the translation at random locations, the ensuing libraries were composed of mostly truncated peptides and thus not really suitable for the generation of cDNA libraries. Later, removal of the stop codon from mRNA was used to stall the translation at the end of the mRNA.264,265 Several improvements have been made more recently to stabilize the... [Pg.549]

The translocation step is probably the point at which prokaryotic and eukaryotic secretion differ most. The energy for this process may derive from different sources from the energy of protein synthesis in eukaryotes, and from protein synthesis and/or ATP hydrolysis and/or the membrane potential in prokaryotes. [In fact there is evidence for more than one secretion pathway in E. coli. The degree of coupling between translation and translocation may also be different in prokaryotes and eukaryotes (Section V,C).]... [Pg.169]

Transfer RNA molecules (iRNAs), messenger RNA (mRNA) and many proteins participate in protein synthesis along with ribosomes. The link between amino acids and nucleic acids is first made by enzymes called aminoacyhtRNA synthetases. By specifically linking a particular amino acid to each tRNA, these enzymes translate the genetic code. This chapter focuses primarily on protein synthesis in prokaryotes because it illustrates many general principles and is well understood. Some distinctive features of protein synthesis in eukaryotes also are presented. [Pg.858]


See other pages where Protein synthesis prokaryotic translation is mentioned: [Pg.118]    [Pg.539]    [Pg.352]    [Pg.355]    [Pg.31]    [Pg.51]    [Pg.581]    [Pg.214]    [Pg.1092]    [Pg.393]    [Pg.442]    [Pg.1700]    [Pg.993]    [Pg.147]    [Pg.147]    [Pg.251]    [Pg.345]    [Pg.9]    [Pg.307]    [Pg.78]    [Pg.260]    [Pg.221]    [Pg.1235]    [Pg.708]    [Pg.121]    [Pg.575]    [Pg.580]    [Pg.72]    [Pg.125]    [Pg.870]    [Pg.879]   
See also in sourсe #XX -- [ Pg.340 , Pg.341 , Pg.342 , Pg.343 , Pg.344 , Pg.345 , Pg.346 , Pg.347 , Pg.348 , Pg.349 , Pg.350 ]




SEARCH



Prokaryotes

Prokaryotes protein synthesis

Prokaryotes translation

Prokaryotic

Prokaryotic protein synthesis

Prokaryots

Protein prokaryotic

Proteins translation

Translation prokaryotic

Translation synthesis

© 2024 chempedia.info