Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Protein bioavailability

Macrolide Route of Protein Bioavailability Effect of food... [Pg.1607]

To modulate the rate and extent of therapeutic protein exposure in target tissues, scientists have considered other routes of administration. These alternative routes of drug delivery will be discussed below. All available data suggest that protein bioavailability is expected to be low for nonparenteral routes of administration (i.e., less than 10%). [Pg.340]

Ideally microbial cells should be consumable directly as food or food ingredients. However, because of their nucleic acid content the presence of undesirable physiologically active components the deleterious effects of cell wall material on protein bioavailability and the lack of requisite and discrete functional properties, rupture of cells and extraction of the protein is a necessary step. Importantly, for many food uses (particularly as a functional protein ingredient) an undenatured protein is required. For these reasons and for many potential applications of yeast protein(s) it is very desirable to separate cell wall material and RNA from the protein(s) for food applications. Much research is needed to develop a practical method for isolation of intact, undenatured yeast proteins from the yeast cell wall material to ensure the requisite nutritional and functional properties. [Pg.49]

Peptide/protein Bioavailability in humans (%) Formulation Company/stage... [Pg.2679]

Whether or not ethanol proves a key to substantially improving inhaled protein bioavailabilities in humans, research related to bioavailability enhancement is likely to be followed closely by those aiming to fully exploit the commercial potential of inhaled delivery systems for systemic application. [Pg.557]

Racemization of amino acyl residues in food proteins is a reaction that can take place during processing and cooking. This review deals with the occurrence and detection of alkali- and heat-induced racemization in proteins. Differences between calcium hydroxide-and sodium hydroxide-induced racemization and the effects of treatment with these alkalis on protein bioavailability is discussed. [Pg.169]

To prevent flavor deterioration due to the action of lipoxygenases and other enzymes, unprocessed plant foods such as beans and peas are blanched before canning or freezing to inactivate these enzymes. These heat treatments must be carried out under mild conditions to avoid undesirable changes in texture and loss of protein bioavailability. [Pg.302]

EoUowing po administration moricizine is completely absorbed from the GI tract. The dmg undergoes considerable first-pass hepatic metabolism so that only 30—40% of the dose is bioavailable. Moricizine is extensively (95%) bound to plasma protein, mainly albumin and a -acid glycoprotein. The time to peak plasma concentrations is 0.42—3.90 h. Therapeutic concentrations are 0.06—3.00 ]l/niL. Using radiolabeled moricizine, more than 30 metabolites have been noted but only 12 have been identified. Eight appear in urine. The sulfoxide metabolite is equipotent to the parent compound as an antiarrhythmic. Elimination half-life is 2—6 h for the unchanged dmg and known metabolites, and 84 h for total radioactivity of the labeled dmg (1,2). [Pg.113]

Tocainide is rapidly and well absorbed from the GI tract and undergoes very fitde hepatic first-pass metabolism. Unlike lidocaine which is - 30% bioavailable, tocainide s availability approaches 100% of the administered dose. Eood delays absorption and decreases plasma levels but does not affect bio availability. Less than 10% of the dmg is bound to plasma proteins. Therapeutic plasma concentrations are 3—9 jig/mL. Toxic plasma levels are >10 fig/mL. Peak plasma concentrations are achieved in 0.5—2 h. About 30—40% of tocainide is metabolized in the fiver by deamination and glucuronidation to inactive metabolites. The metabolism is stereoselective and the steady-state plasma concentration of the (3)-(—) enantiomer is about four times that of the (R)-(+) enantiomer. About 50% of the tocainide dose is efirninated by the kidneys unchanged, and the rest is efirninated as metabolites. The elimination half-life of tocainide is about 15 h, and is prolonged in patients with renal disease (1,2,23). [Pg.113]

Elecainide is weU absorbed and 90% of the po dose is bioavailable. Binding to plasma protein is only 40% and peak plasma concentrations are attained in about 1—6 h. Three to five days may be requited to attain steady-state plasma concentrations when multiple doses are used. Therapeutic plasma concentrations are 0.2—1.0 lg/mL. Elecainide has an elimination half-life of 12—27 h, allowing twice a day dosing. The plasma half-life is increased in patients with renal failure or low cardiac outputs. About 70% of the flecainide in plasma is metabolized by the Hver to two principal metaboUtes. The antiarrhythmic potency of the meta-O-dealkylated metaboUte and the meta-O-dealkylated lactam, relative to that of flecainide is 50 and 10%, respectively. The plasma concentrations of the two metaboUtes relative to that of flecainide are 3—25%. Elecainide is mainly excreted by the kidneys, 30% unchanged, the rest as metaboUtes or conjugates about 5% is excreted in the feces (1,2). [Pg.114]

About 97% of po dose is absorbed from the GI tract. The dmg undergoes extensive first-pass hepatic metaboHsm and only 12% of the po dose is bioavailable. More than 95% is protein bound and peak plasma concentrations are achieved in 2—3 h. Therapeutic plasma concentrations are 0.064—1.044 lg/mL. The dmg is metabolized in the Hver to 5-hyroxypropafenone, which has some antiarrhythmic activity, and to inactive hydroxymethoxy propafenone, glucuronides, and sulfate conjugates. Less than 1% of the po dose is excreted by the kidney unchanged. The elimination half-life is 2—12 h (32). [Pg.114]

Nicardipine is almost completely absorbed after po adrninistration. Administration of food decreases absorption. It undergoes extensive first-pass metaboHsm in the Hver. Systemic availabiHty is dose-dependent because of saturation of hepatic metaboHc pathways. A 30 mg dose is - 35% bioavailable. Nicardipine is highly protein bound (>95%). Peak plasma concentrations are achieved in 0.5—2.0 h. The principal path of elimination is by hepatic metaboHsm by hydrolysis and oxidation. The metaboHtes are relatively inactive and exert no pharmacological activity. The elimination half-life is 8.6 h. About 60% of the dose is excreted in the urine as metaboHtes (<1% as intact dmg) and 35% as metaboHtes in the feces (1,2,98,99). [Pg.126]

Chan LM, Lowes S, Hirst BH (2004) The ABCs of drug transport in intestine and liver efflux proteins limiting drug absorption and bioavailability. Eur J Pharm Sci 21 25—51... [Pg.8]

Most foods of animal origin contain nicotinamide in the coenzyme form (high bioavialability). Liver and meat are particularly rich in highly bioavailable niacin. Most of the niacin in plants, however, occurs as nicotinic acid in overall lower concentrations and with a lower bioavailability. The major portion of niacin in cereals is found in the outer layer and its bioavailability is as low as 30% because it is bound to protein (niacytin). If the diet contains a surplus of L-tryptophan (Ttp), e.g., more than is necessary for protein synthesis, the liver can synthesize NAD from Trp. Niacin requirements are therefore declared as niacin equivalents (1 NE = 1 mg niacin = 60 mg Trp). [Pg.850]

Milk, milk products, and foods of animal origin contain high amounts of (free) riboflavin with good bioavailability. In foods of plant origin, the majority of riboflavin is protein-bound and therefore less bioavail-able. Cereal germs and bran are plant sources rich in riboflavin [1]. [Pg.1289]

The nasal tissue is highly vascularized and provides efficient systemic absorption. Compared with oral or subcutaneous administration, nasal administration enhances bioavailability and improves safety and efficacy. Chitosan enhances the absorption of proteins and peptide drugs across nasal and intestinal epithelia. Gogev et al. demonstrated that the soluble formulation of glycol chitosan has potential usefulness as an intranasal adjuvant for recombinant viral vector vaccines in cattle [276]. [Pg.189]

To maximize safety and therapeutic efficacy, potential drugs are required to be highly specific for their protein target and orally bioavailable. In addition, for a drug candidate to reach the market, it must be patentably novel. A computational approach therefore needs to find novel compounds with well-defined pharmacological properties from the vast space of possible organic compounds ( chemical space ). [Pg.323]

MARIOTTI F, PUEYO M E, TOME D, BEROT S, BENAMOUZIG R, MAKE S (2001) The influence of the albumin fraction on the bioavailability and postprandial utilization of pea protein given selectively to humans. /Awir. 131 1706-13. [Pg.181]

Specific carotenoid-protein complexes have been reported in plants and invertebrates (cyanobacteria, crustaceans, silkworms, etc.), while data on the existence of carotenoproteins in vertebrates are more limited. As alternatives for their water solubilization, carotenoids could use small cytosolic carrier vesicles." Carotenoids can also be present in very fine physical dispersions (or crystalline aggregates) in aqueous media of oranges, tomatoes, and carrots. Thus these physicochemical characteristics of carotenoids as well as those of other pigments are important issues for the understanding of their bioavailability. [Pg.148]

Algae can be cultivated easily and quickly when compared to plants. They produce very high quantities of carotenoids compared to other sources (3.0 to 5.0% w/w on a dry weight basis). They contain both cis and trans isomers of carotenoids for high bioavailability and bioefflcacy, and also contain oxygenated carotenoids (xantho-phylls), which have greater bioactivity and better anticancer properties. The proteins from Dunaliella biomass can be utilized for bread and other products and whole cells can be utilized for animal, poultry, and fish foods because they are safe. ... [Pg.404]

The list of elements and their species listed above is not exhaustive. It is limited to the relatively simple compounds that have been determined by an important number of laboratories specializing in speciation analysis. Considering the economic importance of the results, time has come to invest in adequate CRMs. There is a steadily increasing interest in trace element species in food and in the gastrointestinal tract where the chemical form is the determinant factor for their bioavailability (Crews 1998). In clinical chemistry the relevance of trace elements will only be fully elucidated when the species and transformation of species in the living system have been measured (ComeUs 1996 Cornelis et al. 1998). Ultimately there will be a need for adequate RMs certified for the trace element species bound to large molecules, such as proteins. [Pg.83]

Camire (2002) showed that texturization does not seem to have a great effect on mineral retention and bioavailability. Others have reported increased retention of ascorbic acid in rice- and maize-based snacks (Hazell and Johnson, 1989 Plunkett and Ainsworth, 2007), increased iron diffusibility and absorption of iron-complexed protein (Poltronieri et al, 2000 Watzke, 1998), and no difference in iron and zinc absorption in human subjects fed textured bran-flour (Fairweather-Tait et al, 1989). [Pg.188]


See other pages where Protein bioavailability is mentioned: [Pg.1378]    [Pg.1384]    [Pg.2028]    [Pg.329]    [Pg.591]    [Pg.1378]    [Pg.1384]    [Pg.2028]    [Pg.329]    [Pg.591]    [Pg.68]    [Pg.119]    [Pg.126]    [Pg.114]    [Pg.6]    [Pg.7]    [Pg.1012]    [Pg.1068]    [Pg.1270]    [Pg.43]    [Pg.91]    [Pg.170]    [Pg.16]    [Pg.129]    [Pg.138]    [Pg.93]    [Pg.165]    [Pg.337]    [Pg.348]    [Pg.158]    [Pg.159]    [Pg.229]    [Pg.98]    [Pg.396]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Protein nutrient bioavailability

Proteins mineral bioavailability

© 2024 chempedia.info