Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Propylene carbonylation

Let us consider each of the reactions in Scheme 6 Reaction A involves intramolecular hydride transfer to the electron-deficient /J-carbon atom following protonation of an epoxide, with the net effect being isomerization the hydride-transfer to acylium ion in reaction B presumably occurs after initial attack of CO on adsorbed isopropyl car-bonium ion in propylene carbonylation in C and D, hydride transfer occurs to carbonium ions generated after initial attack (alkylation) by... [Pg.271]

Carbonylation of Olefins. A catalyst, containing 5% Pd on active carbon exhibits high activity and selectivity in propylene carbonylation (14) (Table 2). The catalyst is prepared by soaking active carbon by H2PdCl4 solution further, H2PdCl4 is converted into Pd(OH)2 by precipitation with sodium carbonate, with subsequent reduction of Pd(II) to Pd(0) by molecular hydrogen at room temperature. The carbonylation reaction is carried out under static conditions in... [Pg.564]

Carbonylation of Olefins. Two catalysts 1% Pd/0.8 CaNaY, and 1% Pd/HMOR were tested in propylene carbonylation (14). Both Pd-containing zeolite catalysts exhibit high activity and selectivity, conversion to butyric acids being 97-99% (Table 6). The change of the nature of the zeolite does not affect the yield and composition of the reaction products. However, Pd/zeolite catalysts are destroyed during the cause of the experiments by both the acid used as the solvent and the acid formed in the reaction. According to x-ray analysis 100% destruction of zeolite structure was observed after the end of experiment. [Pg.571]

Fig. 7. Scheme for propylene carbonylation-polymerization on H-MOR. Reproduced from Refs. (93,94). [Pg.596]

Commercial production of acetic acid has been revolutionized in the decade 1978—1988. Butane—naphtha Hquid-phase catalytic oxidation has declined precipitously as methanol [67-56-1] or methyl acetate [79-20-9] carbonylation has become the technology of choice in the world market. By-product acetic acid recovery in other hydrocarbon oxidations, eg, in xylene oxidation to terephthaUc acid and propylene conversion to acryflc acid, has also grown. Production from synthesis gas is increasing and the development of alternative raw materials is under serious consideration following widespread dislocations in the cost of raw material (see Chemurgy). [Pg.66]

Acrolein is produced according to the specifications in Table 3. Acetaldehyde and acetone are the principal carbonyl impurities in freshly distilled acrolein. Acrolein dimer accumulates at 0.50% in 30 days at 25°C. Analysis by two gas chromatographic methods with thermal conductivity detectors can determine all significant impurities in acrolein. The analysis with Porapak Q, 175—300 p.m (50—80 mesh), programmed from 60 to 250°C at 10°C/min, does not separate acetone, propionaldehyde, and propylene oxide from acrolein. These separations are made with 20% Tergitol E-35 on 250—350 p.m (45—60 mesh) Chromosorb W, kept at 40°C until acrolein elutes and then programmed rapidly to 190°C to elute the remaining components. [Pg.124]

The stoichiometric and the catalytic reactions occur simultaneously, but the catalytic reaction predominates. The process is started with stoichiometric amounts, but afterward, carbon monoxide, acetylene, and excess alcohol give most of the acrylate ester by the catalytic reaction. The nickel chloride is recovered and recycled to the nickel carbonyl synthesis step. The main by-product is ethyl propionate, which is difficult to separate from ethyl acrylate. However, by proper control of the feeds and reaction conditions, it is possible to keep the ethyl propionate content below 1%. Even so, this is significantly higher than the propionate content of the esters from the propylene oxidation route. [Pg.155]

Rhodium Ca.ta.lysts. Rhodium carbonyl catalysts for olefin hydroformylation are more active than cobalt carbonyls and can be appHed at lower temperatures and pressures (14). Rhodium hydrocarbonyl [75506-18-2] HRh(CO)4, results in lower -butyraldehyde [123-72-8] to isobutyraldehyde [78-84-2] ratios from propylene [115-07-17, C H, than does cobalt hydrocarbonyl, ie, 50/50 vs 80/20. Ligand-modified rhodium catalysts, HRh(CO)2L2 or HRh(CO)L2, afford /iso-ratios as high as 92/8 the ligand is generally a tertiary phosphine. The rhodium catalyst process was developed joindy by Union Carbide Chemicals, Johnson-Matthey, and Davy Powergas and has been Hcensed to several companies. It is particulady suited to propylene conversion to -butyraldehyde for 2-ethylhexanol production in that by-product isobutyraldehyde is minimized. [Pg.458]

Uses. Besides polymerizing TFE to various types of high PTEE homopolymer, TEE is copolymerized with hexafluoropropylene (29), ethylene (30), perfluorinated ether (31), isobutylene (32), propylene (33), and in some cases it is used as a termonomer (34). It is used to prepare low molecular weight polyfluorocarbons (35) and carbonyl fluoride (36), as well as to form PTEE m situ on metal surfaces (37). Hexafluoropropylene [116-15-4] (38,39), perfluorinated ethers, and other oligomers are prepared from TEE. [Pg.349]

Lactones are piepaied from formaldehyde and carbon monoxide by cyclocondensation with propylene glycol in the presence of a strong acid and a Cu(l) or Ag carbonyl catalyst (20). [Pg.366]

Propylene-Based Routes. The strong acid-catalyzed carbonylation of propylene [115-07-1] to isobutyric acid (Koch reaction) followed by oxidative dehydration to methacrylic acid has been extensively studied since the 1960s. The principal side reaction in the Koch reaction is the formation of oligomers of propylene. Increasing yields of methacrylic acid in the oxydehydration step is the current focus of research. Isobutyric acid may also be obtained via the oxidation of isobutyraldehyde, which is available from the hydroformylation of propylene. The -butyraldehyde isomer that is formed in the hydroformylation must be separated. [Pg.252]

Carbonyl Compounds. Cychc ketals and acetals (dioxolanes) are produced from reaction of propylene oxide with ketones and aldehydes, respectively. Suitable catalysts iaclude stannic chloride, quaternary ammonium salts, glycol sulphites, and molybdenum acetyl acetonate or naphthenate (89—91). Lactones come from Ph4Sbl-cataly2ed reaction with ketenes (92). [Pg.135]

Acetic acid (qv) can be produced synthetically (methanol carbonylation, acetaldehyde oxidation, butane/naphtha oxidation) or from natural sources (5). Oxygen is added to propylene to make acrolein, which is further oxidized to acryHc acid (see Acrylic acid and derivatives). An alternative method adds carbon monoxide and/or water to acetylene (6). Benzoic acid (qv) is made by oxidizing toluene in the presence of a cobalt catalyst (7). [Pg.94]

Metathesis is the rupture and reformation of carbon-carbon bonds—for example, of propylene into ethylene plus butene. Catalysts are oxides, carbonyls, or sulfides of Mo, W, or Re. [Pg.2095]

Thus, a mixture of simple carbonyls Me(CO)n and halides should behave as a photoinitiator of free radical polymerization. Many such systems have been found to function in this way. Complexes formed by irradiation of Fe(CO)5 in the presence of a vinyl monomer (M) (such as MMA, styrene, vinyl acetate, propylene, and vinyl ether) have been studied by Koerner Von Grustrof and colleagues [12,13] and shown to have the chemical struc-... [Pg.245]

The production of 1,4-butanediol (1,4-BDO) from propylene via the carbonylation of allyl acetate is noted in Chapter 8. 1,4-Butanediol from maleic anhydride is discussed later in this chapter. An alternative route for the diol is through the acetoxylation of butadiene with acetic acid followed by hydrogenation and hydrolysis. [Pg.258]

Carbon dioxide, carbonyl sulfide, hydrogen cyanide, propylene, and butadiene... [Pg.268]

The carbonyl [CpFe(CO)2]2 has been successfully employed as a catalyst for hydroformylation of propylene (229) and for the reaction in Eq. (55) (221). Insertion of CO into Fe—C bonds is thought to occur therein. [Pg.129]

The first stage of the process is a hydroformylation (oxo) reaction from which the main product is n-butyraldehyde. The feeds to this reactor are synthesis gas (CO/H2 mixture) and propylene in the molar ratio 2 1, and the recycled products of isobutyraldehyde cracking. The reactor operates at 130°C and 350 bar, using cobalt carbonyl as catalyst in solution. The main reaction products are n- and isobutyraldehyde in the ratio of 4 1, the former being the required product for subsequent conversion to 2-ethylhexanol. In addition, 3 per cent of the propylene feed is converted to propane whilst some does not react. [Pg.965]

When propylene chemisorbs to form this symmetric allylic species, the double-bond frequency occurs at 1545 cm-1, a value 107 cm-1 lower than that found for gaseous propylene hence, by the usual criteria, the propylene is 7r-bonded to the surface. For such a surface ir-allyl there should be gross similarities to known ir-allyl complexes of transition metals. Data for allyl complexes of manganese carbonyls (SI) show that for the cr-allyl species the double-bond frequency occurs at about 1620 cm-1 formation of the x-allyl species causes a much larger double-bond frequency shift to 1505 cm-1. The shift observed for adsorbed propylene is far too large to involve a simple o--complex, but is somewhat less than that observed for transition metal r-allyls. Since simple -complexes show a correlation of bond strength to double-bond frequency shift, it seems reasonable to suppose that the smaller shift observed for surface x-allyls implies a weaker bonding than that found for transition metal complexes. [Pg.34]

Many research groups have attributed the isomerization to a series of additions and eliminations of a cobalt carbonyl hydride. However, it has been shown that aldehydes may be found with formyl groups attached to a carbon atom other than the two of the double bond even under non-isomerizing conditions. Piacenti and co-workers (44, 45) studied the hydroformylation of [l-14C]propylene and of a>-deuterated a-olefins. Even for a-olefins with chain lengths up to C6, the formyl group was attached to all possible carbon atoms in the product mixture. However, in the deuterated experiments, deuterium was present only on carbons 2, 3, and a) of the resulting aldehydes. These results were explained by pro-... [Pg.13]

Another route to the diol monomer is provided by hydroformylation of allyl alcohol or allyl acetate. Allyl acetate can be produced easily by the palladium-catalyzed oxidation of propylene in the presence of acetic acid in a process similar to commercial vinyl acetate production. Both cobalt-and rhodium-catalyzed hydroformylations have received much attention in recent patent literature (83-86). Hydroformylation with cobalt carbonyl at 140°C and 180-200 atm H2/CO (83) gave a mixture of three aldehydes in 85-99% total yield. [Pg.40]

The catalyst formed in this manner exhibited carbonyl infrared absorptions, as shown in Table XXX. These catalysts were tested by hydroformylation of ethylene or propylene at 100°C and atmospheric pressure. Both were effective, with (A) being better than (B), probably because of the higher surface area. The aldehyde formed from propylene was a mixture of 63% n- and 37% isobutyraldehyde. The rate expression for ethylene hydroformylation was ... [Pg.48]


See other pages where Propylene carbonylation is mentioned: [Pg.204]    [Pg.357]    [Pg.7212]    [Pg.120]    [Pg.204]    [Pg.357]    [Pg.7212]    [Pg.120]    [Pg.363]    [Pg.102]    [Pg.126]    [Pg.2073]    [Pg.1057]    [Pg.54]    [Pg.81]    [Pg.149]    [Pg.192]    [Pg.186]    [Pg.47]    [Pg.929]    [Pg.407]    [Pg.146]    [Pg.155]    [Pg.373]    [Pg.188]   


SEARCH



Propylene reductive carbonylation

© 2024 chempedia.info