Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Acrylonitrile/propylene

In addition to homopolymers of varying molecular and particle structure, copolymers are also available commercially in which vinyl chloride is the principal monomer. Comonomers used eommercially include vinyl acetate, vinylidene chloride, propylene, acrylonitrile, vinyl isobutyl ether, and maleic, fumaric and acrylic esters. Of these the first three only are of importance to the plastics industry. The main function of introducing comonomer is to reduce the regularity of the polymer structure and thus lower the interchain forces. The polymers may therefore be proeessed at much lower temperatures and are useful in the manufacture of gramophone records and flooring compositions. [Pg.325]

Some of the primary comonomers that were investigated in the MACROMER studies were the acrylates, vinyl chloride, styrenes, ethylene, ethylene/propylene, acrylonitrile, and N,N-dimethyl-acrylamide. [Pg.49]

In order to confirm this hypothesis, in the absence of oxygen-free radical catalysts effective at —78°C., the temperature dependence of the propylene—acrylonitrile copolymerization in the presence of ethylaluminum dichloride was investigated. [Pg.133]

Figure 2. Propane conversion (O) and the selectivity to propylene ( ), acrylonitrile ( ) and degradation products (A) vs. time-on-stream over (a) Sbo.9Vo.9O4 and (b) solid state preparation with the atomic ratio Sb V = 2 1. Figure 2. Propane conversion (O) and the selectivity to propylene ( ), acrylonitrile ( ) and degradation products (A) vs. time-on-stream over (a) Sbo.9Vo.9O4 and (b) solid state preparation with the atomic ratio Sb V = 2 1.
Incorporation of 0.1—4% zeolites 13X, 5A, 4A, lOX, XW and ala) natural zeolites and synthetic pdyn rs (polystyrene, vinyl chloride-vinyl acetate copolymer, poly propylene, acrylonitrile, butadiene styrene copolymer, poly (methyl methacrylate or polyetl lene) containing 0.1-4% antistatic agent improves antistatic properties. However tire zeolites alone fail to do so In another instance a composition of polyvinylchloride 100, dioctylthalate 80, stabilizer 2, Pd-stearate-1, and zeolite 100 parts is rolled at 160 ° and pressed to give a white sheet having surface resistivity 3.8 x 10 ohm-cm coitq>ared with 1.5 X 10 ohm-cm for a similar sheet containing calcium carbonate in place of zedite, vdiich reflects the definite role of these zeolites in improving the antistatic properties of the composition. [Pg.86]

Additionally to the procedures described earlier, improvements for thermostabilization is copolymerisation of vinyl chloride with suitable monomers. A great number of monomers were investigated to optimize the properties of resins. But only vinyl acetate, vinylidene chloride, ethylene, propylene, acrylonitrile, acrylic acid esters, and maleic acid esters, respectively, are of interest commercially [305,436,437]. The copolymerization was carried out in emulsion, suspension, and solution in connection with water- or oil-soluble initiators, as mentioned elsewhere. Another possibility for modifying PVC is grafting of VC on suitable polymers [305,438], blends of PVC with butadiene/styrene and butadiene/ methacryl acid esters copolymers [433], and polymer-analogous reactions on the macromolecule [439,440] (e.g., chlorination of PVC). [Pg.201]

Unsaturated nitriles are formed by the reaction of ethylene or propylene with Pd(CN)2[252]. The synthesis of unsaturated nitriles by a gas-phase reaction of alkenes. HCN, and oxygen was carried out by use of a Pd catalyst supported on active carbon. Acrylonitrile is formed from ethylene. Methacrylonitrile and crotononitrile are obtained from propylene[253]. Vinyl chloride is obtained in a high yield from ethylene and PdCl2 using highly polar solvents such as DMF. The reaction can be made catalytic by the use of chloranil[254]. [Pg.59]

PROPENE The major use of propene is in the produc tion of polypropylene Two other propene derived organic chemicals acrylonitrile and propylene oxide are also starting materials for polymer synthesis Acrylonitrile is used to make acrylic fibers (see Table 6 5) and propylene oxide is one component in the preparation of polyurethane polymers Cumene itself has no direct uses but rather serves as the starting material in a process that yields two valuable indus trial chemicals acetone and phenol... [Pg.269]

Amm oxida tion, a vapor-phase reaction of hydrocarbon with ammonia and oxygen (air) (eq. 2), can be used to produce hydrogen cyanide (HCN), acrylonitrile, acetonitrile (as a by-product of acrylonitrile manufacture), methacrylonitrile, hen onitrile, and toluinitnles from methane, propylene, butylene, toluene, and xylenes, respectively (4). [Pg.217]

Most, if not all, of the acetonitrile that was produced commercially in the United States in 1995 was isolated as a by-product from the manufacture of acrylonitrile by propylene ammoxidation. The amount of acetonitrile produced in an acrylonitrile plant depends on the ammoxidation catalyst that is used, but the ratio of acetonitrile acrylonitrile usually is ca 2—3 100. The acetonitrile is recovered as the water azeotrope, dried, and purified by distillation (28). U.S. capacity (1994) is ca 23,000 t/yr. [Pg.219]

In 1957 Standard Oil of Ohio (Sohio) discovered bismuth molybdate catalysts capable of producing high yields of acrolein at high propylene conversions (>90%) and at low pressures (12). Over the next 30 years much industrial and academic research and development was devoted to improving these catalysts, which are used in the production processes for acrolein, acryUc acid, and acrylonitrile. AH commercial acrolein manufacturing processes known today are based on propylene oxidation and use bismuth molybdate based catalysts. [Pg.123]

Propylene requirements for acrylates remain small compared to other chemical uses (polypropylene, acrylonitrile, propylene oxide, 2-propanol, and cumene for acetone and phenol). Hence, cost and availabihty are expected to remain attractive and new acrylate capacity should continue to be propylene-based until after the turn of the century. [Pg.152]

Although some very minor manufacturers of acryhc acid may still use hydrolysis of acrylonitrile (see below), essentially all other plants woddwide use the propylene oxidation process. [Pg.155]

Acrylonitrile Route. This process, based on the hydrolysis of acrylonitrile (79), is also a propylene route since acrylonitrile (qv) is produced by the catalytic vapor-phase ammoxidation of propylene. [Pg.155]

The yield of acrylonitrile based on propylene is generally lower than the yield of acryhc acid based on the dkect oxidation of propylene. Hence, for the large volume manufacture of acrylates, the acrylonitrile route is not attractive since additional processing steps are involved and the ultimate yield of acrylate based on propylene is much lower. Hydrolysis of acrylonitrile can be controUed to provide acrylamide rather than acryhc acid, but acryhc acid is a by-product in such a process (80). [Pg.155]

The sulfuric acid hydrolysis may be performed as a batch or continuous operation. Acrylonitrile is converted to acrylamide sulfate by treatment with a small excess of 85% sulfuric acid at 80—100°C. A hold-time of about 1 h provides complete conversion of the acrylonitrile. The reaction mixture may be hydrolyzed and the aqueous acryhc acid recovered by extraction and purified as described under the propylene oxidation process prior to esterification. Alternatively, after reaction with excess alcohol, a mixture of acryhc ester and alcohol is distilled and excess alcohol is recovered by aqueous extractive distillation. The ester in both cases is purified by distillation. [Pg.155]

Acrylonitrile is produced in commercial quantities almost exclusively by the vapor-phase catalytic propylene ammoxidation process developed by Sohio... [Pg.182]

Fig. 1. Process flow diagram of the commercial propylene ammoxidation process for acrylonitrile. BFW, boiler feed water. Fig. 1. Process flow diagram of the commercial propylene ammoxidation process for acrylonitrile. BFW, boiler feed water.
Although acrylonitrile manufacture from propylene and ammonia was first patented in 1949 (30), it was not until 1959, when Sohio developed a catalyst capable of producing acrylonitrile with high selectivity, that commercial manufacture from propylene became economically viable (1). Production improvements over the past 30 years have stemmed largely from development of several generations of increasingly more efficient catalysts. These catalysts are multicomponent mixed metal oxides mostly based on bismuth—molybdenum oxide. Other types of catalysts that have been used commercially are based on iron—antimony oxide, uranium—antimony oxide, and tellurium-molybdenum oxide. [Pg.182]

These processes use expensive C2 hydrocarbons as feedstocks and thus have higher overall acrylonitrile production costs compared to the propylene-based process technology. The last commercial plants using these process technologies were shut down by 1970. [Pg.184]

Other routes to acrylonitrile, none of which achieved large-scale commercial appHcation, are acetaldehyde and HCN (56), propionittile dehydrogenation (57,58), and propylene and nitric oxide (59,60) ... [Pg.184]

A two-step process involving conventional nonoxidative dehydrogenation of propane to propylene in the presence of steam, followed by the catalytic ammoxidation to acrylonitrile of the propylene in the effluent stream without separation, is also disclosed (65). [Pg.184]

Because of the large price differential between propane and propylene, which has ranged from 155/t to 355 /1 between 1987 and 1989, a propane-based process may have the economic potential to displace propylene ammoxidation technology eventually. Methane, ethane, and butane, which are also less expensive than propylene, and acetonitrile have been disclosed as starting materials for acrylonitrile synthesis in several catalytic process schemes (66,67). [Pg.184]

The propylene-based process developed by Sohio was able to displace all other commercial production technologies because of its substantial advantage in overall production costs, primarily due to lower raw material costs. Raw material costs less by-product credits account for about 60% of the total acrylonitrile production cost for a world-scale plant. The process has remained economically advantaged over other process technologies since the first commercial plant in 1960 because of the higher acrylonitrile yields resulting from the introduction of improved commercial catalysts. Reported per-pass conversions of propylene to acrylonitrile have increased from about 65% to over 80% (28,68—70). [Pg.184]

The latest of three ethylene recovery plants was started in 1991. Sasol sold almost 300,000 t of ethylene in 1992. Sasol also produces polypropylene at Secunda from propylene produced at Sasol Two. In 1992 Sasol started constmction of a linear alpha olefin plant at Secunda to be completed in 1994 (40). Initial production is expected to be 100,000 t/yr pentene and hexene. Sasol also has a project under constmction to extract and purify krypton and xenon from the air separation plants at Sasol Two. Other potential new products under consideration at Sasol are acrylonitrile, acetic acid, acetates, and alkylamines. [Pg.168]

Many cellular plastics that have not reached significant commercial use have been introduced or their manufacture described in Hterature. Examples of such polymers are chlorinated or chlorosulfonated polyethylene, a copolymer of vinyUdene fluoride and hexafluoropropylene, polyamides (4), polytetrafluoroethylene (5), styrene—acrylonitrile copolymers (6,7), polyimides (8), and ethylene—propylene copolymers (9). [Pg.403]

Addition of Hydrogen Cyanide. At one time the predominant commercial route to acrylonitrile was the addition of hydrogen cyanide to acetylene. The reaction can be conducted in the Hquid (CuCl catalyst) or gas phase (basic catalyst at 400 to 600°C). This route has been completely replaced by the ammoxidation of propylene (SOHIO process) (see Acrylonitrile). [Pg.374]

Oxidation Catalysis. The multiple oxidation states available in molybdenum oxide species make these exceUent catalysts in oxidation reactions. The oxidation of methanol (qv) to formaldehyde (qv) is generally carried out commercially on mixed ferric molybdate—molybdenum trioxide catalysts. The oxidation of propylene (qv) to acrolein (77) and the ammoxidation of propylene to acrylonitrile (qv) (78) are each carried out over bismuth—molybdenum oxide catalyst systems. The latter (Sohio) process produces in excess of 3.6 x 10 t/yr of acrylonitrile, which finds use in the production of fibers (qv), elastomers (qv), and water-soluble polymers. [Pg.477]

Organic peroxides are used in the polymer industry as thermal sources of free radicals. They are used primarily to initiate the polymerisation and copolymerisation of vinyl and diene monomers, eg, ethylene, vinyl chloride, styrene, acryUc acid and esters, methacrylic acid and esters, vinyl acetate, acrylonitrile, and butadiene (see Initiators). They ate also used to cute or cross-link resins, eg, unsaturated polyester—styrene blends, thermoplastics such as polyethylene, elastomers such as ethylene—propylene copolymers and terpolymers and ethylene—vinyl acetate copolymer, and mbbets such as siUcone mbbet and styrene-butadiene mbbet. [Pg.135]


See other pages where Acrylonitrile/propylene is mentioned: [Pg.218]    [Pg.336]    [Pg.274]    [Pg.357]    [Pg.1071]    [Pg.143]    [Pg.414]    [Pg.416]    [Pg.209]    [Pg.19]    [Pg.167]    [Pg.219]    [Pg.218]    [Pg.336]    [Pg.274]    [Pg.357]    [Pg.1071]    [Pg.143]    [Pg.414]    [Pg.416]    [Pg.209]    [Pg.19]    [Pg.167]    [Pg.219]    [Pg.62]    [Pg.114]    [Pg.180]    [Pg.182]    [Pg.182]    [Pg.184]    [Pg.247]    [Pg.72]   
See also in sourсe #XX -- [ Pg.511 ]

See also in sourсe #XX -- [ Pg.120 , Pg.157 , Pg.158 , Pg.159 , Pg.160 , Pg.264 , Pg.287 ]




SEARCH



Acrolein/acrylonitrile propylene oxidation

Acrylonitrile propylene ammoxidation

Acrylonitrile propylene ammoxidation process

Ammoxidation of propylene to acrylonitrile

Ethylene-propylene-diene-monomer blend with styrene acrylonitrile

Examples acrylonitrile/propylene ammoxidation

Propylene, ammoxidation to acrylonitrile

© 2024 chempedia.info