Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Properties of Thiocyanates

Properties of Thiocyanates.—Continuing studies of thiocyanate isomerization through gas-phase pyrolysis maintain the view that a highly concerted six-centre transition state with very little charge separation is involved. Rearrangement of benzhydryl thiocyanate in solution through ion-pair return has been studied, leading to an estimate for the volume of activation.  [Pg.65]

Photolysis of methyl thiocyanate or methyl isothiocyanate at wavelengths in the vacuum-u.v. causes the production of fluorescence due to thiocyanate excited radicals.  [Pg.65]


Tian ZQ, Ren B, Mao BW. 1997. Extending surface Raman spectroscopy to transition metal surfaces for practical applications. 1. Vibrational properties of thiocyanate and carbon monoxide adsorbed on electrochemically activated platinum surfaces. J Phys Chem B 101 1338-1346. [Pg.408]

Thousands of compounds of the actinide elements have been prepared, and the properties of some of the important binary compounds are summarized in Table 8 (13,17,18,22). The binary compounds with carbon, boron, nitrogen, siUcon, and sulfur are not included these are of interest, however, because of their stabiUty at high temperatures. A large number of ternary compounds, including numerous oxyhaUdes, and more compHcated compounds have been synthesized and characterized. These include many intermediate (nonstoichiometric) oxides, and besides the nitrates, sulfates, peroxides, and carbonates, compounds such as phosphates, arsenates, cyanides, cyanates, thiocyanates, selenocyanates, sulfites, selenates, selenites, teUurates, tellurites, selenides, and teUurides. [Pg.221]

Physical Properties. Ammonium thiocyanate [1762-95-4] NH SCN, is a hygroscopic crystalline soHd which deHquesces at high humidities (375,376). It melts at 149°C with partial isomerization to thiourea. It is soluble in water to the extent of 65 wt % at 25°C and 77 wt % at 60°C. It is also soluble to 35 wt % in methanol and 20 wt % in ethanol at 25°C. It is highly soluble in Hquid ammonia and Hquid sulfur dioxide, and moderately soluble in acetonitrile. [Pg.151]

Chemical Properties. Ammonium thiocyanate rearranges upon heating to an equiHbrium mixture with thiourea 30.3 wt % thiourea at 150°C, 25.3 wt % thiourea at 180°C (373,375). At 190—200°C, dry ammonium thiocyanate decomposes to hydrogen sulfide, ammonia, and carbon disulfide, leaving guanidine thiocyanate [56960-89-5] as a residue. Aqueous solutions of ammonium thiocyanate are weakly acidic a 5 wt % solution has a pH of 4—6. [Pg.151]

Physical and Chemical Properties. Sodium thiocyanate [540-72-7] NaSCN, is a colorless dehquescent crystalline soHd (mp 323°C). It is soluble in water to the extent of 58 wt % NaSCN at 25°C and 69 wt % at 100°C. It is also highly soluble in methanol and ethanol, and moderately soluble in acetone. Potassium thiocyanate [333-20-0] KSCN, is also a colorless crystalline soHd (mp 172°C) and is soluble in water to the extent of 217 g/100 g of water at 20°C and in acetone and alcohols. Much of the chemistry of sodium and potassium thiocyanates is that of the thiocyanate anion (372—375). [Pg.152]

The main chemico-analytical properties of the designed ionoselective electrodes have been determined. The work pH range of the electrodes is 1 to 5. The steepness of the electrode function is close to the idealized one calculated for two-charged ions (26-29 mV/pC). The electrode function have been established in the concentration range from 0.1 to 0.00001 mole/1. The principal advantage of such electrodes is the fact that thiocyanate ions are simultaneously both complexing ligands and the ionic power. The sensitivity (the discovery limits), selectivity (coefficient of selectivity) and the influence of the main temporal factors (drift of a potential, time of the response, lifetime of the membranes) were determined for these electrodes. [Pg.35]

Table 3.5-1 lists the E-r values for the allcylammonium thiocyanates and nitrates and the substituted imidazolium salts. It can be seen that the values are dominated by the nature of the cation. For instance, values for monoallcylammonium nitrates and thiocyanates are ca. 0.95-1.01, whereas the two tetraalkylammonium salts have values of ca. 0.42-0.46. The substituted imidazolium salts lie between these two extremes, with those with a proton at the 2-position of the ring having higher values than those with this position methylated. This is entirely consistent with the expected hydrogen bond donor properties of these cations. [Pg.96]

In recent years research in the field of transition-metal thiocyanates and selenocyanates received a new impetus, because of the partly interesting physical properties of such crystalline species. A review on Cd and Hg thiocyanate systems collects and sorts results of this endeavor.371 The nonlinear optical (NLO) properties of Cd thiocyanate and selenocyanate systems and criteria for the design of NLO crystals (crystal engineering), especially, have been discussed afterwards.372 Further contributions to the field have also been described.37, 374 The structure of mercury chlorothiocyanate has been re-determined.375... [Pg.1284]

According to an O.S. amendment sheet, the procedure as described [1] is dangerous because the reaction mixture (dicyanodiamide and ammonium nitrate) is similar in composition to commercial blasting explosives. This probably also applies to similar earlier preparations [2]. An earlier procedure which involved heating ammonium thiocyanate, lead nitrate and ammonia demolished a 50 bar autoclave [3], TGA and DTA studies show that air is not involved in the thermal decomposition [4], Explosive properties of the nitrate are detailed [5], An improved process involves catalytic conversion at 90-200°C of a molten mixture of urea and ammonium nitrate to give 92% conversion (on urea) of guanidinium nitrate, recovered by crystallisation. Hazards of alternative processes are listed [6],... [Pg.204]

The explosive properties of lead thiocyanate have found limited use. [Pg.370]

An important property of the S-nitroso thiourea derivatives is the ability to effect electrophilic nitrosation of any of the conventional nucleophilic centres. This is manifest kinet-ically by the catalysis of nitrous acid nitrosation effected by added thiourea (equation 29). The situation is completely analogous to the catalysis of the same reactions by added halide ion or thiocyanate ion. The catalytic efficiency of thiourea depends on both the equilibrium constant Xxno for the formation of the intermediate and also its rate constant k with typically a secondary amine65. Since Xxno is known (5000 dm6 mol-2), it is easy to obtain... [Pg.675]

The reactions of 2-tlienylchloride and 5-chloro-2-thenylchloride were also investigated (11). It was found that the chloride of 2-thenylchloride is readily replaced by nucleophilic reagents. In analogous reactions, 5-chloro-2-thenyl chloride was converted to the corresponding acetate and thiocyanate. Certain properties of 2-thenylchloride were found to be different from its analog benzylchloride. It is more prone to solvolysis in the presence of bases, consequently alcohols are often undesirable reaction by-products with 2-thenylchloride. [Pg.134]

Accelerating admixtures based on calcium chloride, formate, nitrate, and thiocyanate have no significant effect on the workability, air content, mix stability, or water-cement ratio of concretes into which they are incorporated. The only properties of plastic concrete which are affected are the heat evolution and setting time. [Pg.270]


See other pages where Properties of Thiocyanates is mentioned: [Pg.269]    [Pg.270]    [Pg.584]    [Pg.584]    [Pg.269]    [Pg.270]    [Pg.584]    [Pg.584]    [Pg.9]    [Pg.199]    [Pg.452]    [Pg.96]    [Pg.871]    [Pg.403]    [Pg.419]    [Pg.289]    [Pg.479]    [Pg.655]    [Pg.667]    [Pg.742]    [Pg.746]    [Pg.119]    [Pg.952]    [Pg.188]    [Pg.209]    [Pg.9]    [Pg.229]    [Pg.460]    [Pg.479]    [Pg.601]    [Pg.184]    [Pg.123]    [Pg.96]    [Pg.952]    [Pg.179]   


SEARCH



Of thiocyanates

© 2024 chempedia.info