Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Processes and Process Developments

When an oil or gas field has just been discovered, the quality of the information available about the well stream may be sparse, and the amount of detail put into the process design should reflect this. However, early models of the process along with broad cost estimates are needed to progress, and both design detail and cost ranges narrow as projects develop through the feasibility study and field development planning phases (see Section 12.0 for a description of project phases). [Pg.239]

Technologies to minimize resource consumption, to promote waste recovery and to develop clean processes and products... [Pg.934]

It was reahzed quite some decades ago that the amount of information accumulated by chemists can, in the long run, be made accessible to the scientific community only in electronic form in other words, it has to be stored in databases. This new field, which deals with the storage, the manipulation, and the processing of chemical information, was emerging without a proper name. In most cases, the scientists active in the field said they were working in "Chemical Information . However, as this term did not make a distinction between librarianship and the development of computer methods, some scientists said they were working in "Computer Chemistry to stress the importance they attributed to the use of the computer for processing chemical information. However, the latter term could easily be confused with Computational Chemistry, which is perceived by others to be more limited to theoretical quantum mechanical calculations. [Pg.4]

Much of the vanadium metal being produced is now made by calcium reduction of V2O5 in a pressure vessel, an adaption of a process developed by McKechnie and Seybair. [Pg.71]

The design of bioseparation unit operations is influenced by these governmental regulations. The constraints on process development grow as a recovery and purification scheme undergo licensing for commercial manufacture. [Pg.47]

S. E. Builder, R. van Reis, N. Paoni, and J. Ogez, "Process Development and Regulatory Approval of Tissue-Type Plasminogen Activator," in... [Pg.57]

Adiponitrile is made commercially by several different processes utilizing different feedstocks. The original process, utilizing adipic acid (qv) as a feedstock, was first commercialized by DuPont in the late 1930s and was the basis for a number of adiponitrile plants. However, the adipic acid process was abandoned by DuPont in favor of two processes based on butadiene (qv). During the 1960s, Monsanto and Asahi developed routes to adiponitrile by the electrodimerization of acrylonitrile (qv). [Pg.220]

Until World War 1 acetone was manufactured commercially by the dry distillation of calcium acetate from lime and pyroligneous acid (wood distillate) (9). During the war processes for acetic acid from acetylene and by fermentation supplanted the pyroligneous acid (10). In turn these methods were displaced by the process developed for the bacterial fermentation of carbohydrates (cornstarch and molasses) to acetone and alcohols (11). At one time Pubhcker Industries, Commercial Solvents, and National Distillers had combined biofermentation capacity of 22,700 metric tons of acetone per year. Biofermentation became noncompetitive around 1960 because of the economics of scale of the isopropyl alcohol dehydrogenation and cumene hydroperoxide processes. [Pg.94]

In contrast to trace impurity removal, the use of adsorption for bulk separation in the liquid phase on a commercial scale is a relatively recent development. The first commercial operation occurred in 1964 with the advent of the UOP Molex process for recovery of high purity / -paraffins (6—8). Since that time, bulk adsorptive separation of liquids has been used to solve a broad range of problems, including individual isomer separations and class separations. The commercial availability of synthetic molecular sieves and ion-exchange resins and the development of novel process concepts have been the two significant factors in the success of these processes. This article is devoted mainly to the theory and operation of these Hquid-phase bulk adsorptive separation processes. [Pg.291]

Such a concept was originally used in a process developed and Hcensed by UOP under the name UOP Sorbex (59,60). Other versions of the SMB system are also used commercially (61). Toray Industries built the Aromax process for the production of -xylene (20,62,63). Illinois Water Treatment and Mitsubishi have commercialized SMB processes for the separation of fmctose from dextrose (64—66). The foUowing discussion is based on the UOP Sorbex process. [Pg.295]

The ammonium chloride process, developed by Asahi Glass, is a variation of the basic Solvay process (9—11). It requires the use of soHd sodium chloride but obtains higher sodium conversions (+90%) than does the Solvay process. This is especially important ia Japan, where salt is imported as a soHd. The major difference from the Solvay process is that here the ammonium chloride produced is crystallized by cooling and through the addition of soHd sodium chloride. The resulting mother Hquor is then recycled to dissolve additional sodium chloride. The ammonium chloride is removed for use as rice paddy fertilizer. Ammonia makeup is generally suppHed by an associated synthesis plant. [Pg.524]

Extraction, a unit operation, is a complex and rapidly developing subject area (1,2). The chemistry of extraction and extractants has been comprehensively described (3,4). The main advantage of solvent extraction as an industrial process Hes in its versatiHty because of the enormous potential choice of solvents and extractants. The industrial appHcation of solvent extraction, including equipment design and operation, is a subject in itself (5). The fundamentals and technology of metal extraction processes have been described (6,7), as has the role of solvent extraction in relation to the overall development and feasibiHty of processes (8). The control of extraction columns has also been discussed (9). [Pg.60]

Nickel and Cobalt. Often present with copper in sulfuric acid leach Hquors are nickel [7440-02-0] and cobalt [7440-48-4]. Extraction using an organophosphoric acid such as D2EHPA at a moderate (3 to 4) pH can readily take out the nickel and cobalt together, leaving the copper in the aqueous phase, but the cobalt—nickel separation is more difficult (274). In the case of chloride leach Hquors, separation of cobalt from nickel is inherently simpler because cobalt, unlike nickel, has a strong tendency to form anionic chloro-complexes. Thus cobalt can be separated by amine extractants, provided the chloride content of the aqueous phase is carefully controUed. A successhil example of this approach is the Falcon-bridge process developed in Norway (274). [Pg.81]

A process developed in Israel (263) uses solvent extraction using a higher alcohol or other solvating solvent. This removes phosphoric acid and some hydrochloric acid from the system driving the equiHbrium of equation 42 to the right. The same principle can be appHed in other salt—acid reactions of the form... [Pg.81]

The alkalized zinc oxide—chromia process developed by SEHT was tested on a commercial scale between 1982 and 1987 in a renovated high pressure methanol synthesis plant in Italy. This plant produced 15,000 t/yr of methanol containing approximately 30% higher alcohols. A demonstration plant for the lEP copper—cobalt oxide process was built in China with a capacity of 670 t/yr, but other higher alcohol synthesis processes have been tested only at bench or pilot-plant scale (23). [Pg.165]

Acetic Acid and Anhydride. Synthesis of acetic acid by carbonylation of methanol is another important homogeneous catalytic reaction. The Monsanto acetic acid process developed in the late 1960s is the best known variant of the process. [Pg.166]

The requirements of thin-film ferroelectrics are stoichiometry, phase formation, crystallization, and microstmctural development for the various device appHcations. As of this writing multimagnetron sputtering (MMS) (56), multiion beam-reactive sputter (MIBERS) deposition (57), uv-excimer laser ablation (58), and electron cyclotron resonance (ECR) plasma-assisted growth (59) are the latest ferroelectric thin-film growth processes to satisfy the requirements. [Pg.206]


See other pages where Processes and Process Developments is mentioned: [Pg.252]    [Pg.300]    [Pg.9]    [Pg.70]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]    [Pg.83]    [Pg.252]    [Pg.300]    [Pg.211]    [Pg.460]    [Pg.473]    [Pg.178]    [Pg.1248]    [Pg.1294]    [Pg.1947]    [Pg.1957]    [Pg.2660]    [Pg.2937]    [Pg.100]    [Pg.245]    [Pg.98]    [Pg.135]    [Pg.226]    [Pg.252]    [Pg.69]    [Pg.475]    [Pg.262]    [Pg.57]    [Pg.51]    [Pg.247]    [Pg.287]    [Pg.315]    [Pg.446]    [Pg.459]    [Pg.562]    [Pg.47]    [Pg.163]    [Pg.163]    [Pg.164]    [Pg.165]    [Pg.178]    [Pg.180]    [Pg.216]   


SEARCH



Process and developer

© 2024 chempedia.info