Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process flow modeling

Use process flow modeling. Using removable sticky notes, you can arrange the various requirements identified during the fishboning activity into a process flow model. This model needs to be carefully reviewed to make sure that it consists of the smallest number of steps necessary to deliver the required process. [Pg.66]

C. J. Chen, Y. G. Kim, and J. A. Walter, Recent developments in quantitative flow visualization and imaging processes, Flow Model. Turbul. Meas., 1992, 17-28. [Pg.82]

After the initial development of the process flow models, the mechanical design phase of the project began. As a result of the existing technology assessment discussed above, significant initial effort was placed in the cost reduction of the reformer and shift portion of the system. Initially, 6 mechanical design concepts were developed and evaluated. [Pg.105]

Van Herle J, Marechal F, Leuenberger S, Membrez Y, BucheU O, Favrat D (2004) Process flow model of solid oxide fuel cell system supplied with sewage biogas. J Power Sources 131 127-141... [Pg.121]

Hannart, B. and Hoplinger, E.J., 1998. Laminar flow in a rectangular diffuser near Hele-Sliaw conditions - a two dinien.sioiial numerical simulation. In Bush, A. W., Lewis, B. A. and Warren, M.D. (eds), Flow Modelling in Industrial Processes, cli. 9, Ellis Horwood, Chichester, pp. 110-118. [Pg.189]

Iterative solution methods are more effective for problems arising in solid mechanics and are not a common feature of the finite element modelling of polymer processes. However, under certain conditions they may provide better computer economy than direct methods. In particular, these methods have an inherent compatibility with algorithms used for parallel processing and hence are potentially more suitable for three-dimensional flow modelling. In this chapter we focus on the direct methods commonly used in flow simulation models. [Pg.199]

The feedforward control strategy (Fig. lb) addresses the disadvantages of the feedback control strategy. The feedforward control strategy measures the disturbance before it affects the output of the process. A model of the process determines the adjustment ia the manipulated variables(s) to compensate for the disturbance. The information flow is therefore forward from the disturbances, before the process is affected, to the manipulated variable iaputs. [Pg.61]

Ultrafiltration separations range from ca 1 to 100 nm. Above ca 50 nm, the process is often known as microfiltration. Transport through ultrafiltration and microfiltration membranes is described by pore-flow models. Below ca 2 nm, interactions between the membrane material and the solute and solvent become significant. That process, called reverse osmosis or hyperfiltration, is best described by solution—diffusion mechanisms. [Pg.293]

It is likely that there will always be a distinction between the way CAD/CAM is used in mechanical design and the way it is used in the chemical process industry. Most of the computations requited in mechanical design involve systems of linear or lineatizable equations, usually describing forces and positions. The calculations requited to model molecular motion or to describe the sequence of unit operations in a process flow sheet are often highly nonlinear and involve systems of mixed forms of equations. Since the natures of the computational problems are quite different, it is most likely that graphic techniques will continue to be used more to display results than to create them. [Pg.68]

Flow-sheet models are used at all stages in the life cycle of a process plant during process development, for process design and retrofits, and for plant operations. Input to the model consists of information normally contained in the process flow sheet. Output from the model is a complete representation of the performance of the plant, including the composition, flow, and properties of all intermediate and product streams and the performance of the process units. [Pg.72]

Define the process flow sheet to be modeled and the purpose of the model. [Pg.73]

Break the process flow sheet iato unit operations and choose an appropriate model for each unit. [Pg.73]

Many industrial separations require a series of columns that are connected in specific ways. Some distillation programs can model such a system as a hypothetical single column with arbitrary cross-flows and connections and then carry out the distillation calculations for the modeled hypothetical column. Alternatively, such a system can be modeled as a process flow sheet using a process simulator. [Pg.78]

Mathematically speaking, a process simulation model consists of a set of variables (stream flows, stream conditions and compositions, conditions of process equipment, etc) that can be equalities and inequalities. Simulation of steady-state processes assume that the values of all the variables are independent of time a mathematical model results in a set of algebraic equations. If, on the other hand, many of the variables were to be time dependent (m the case of simulation of batch processes, shutdowns and startups of plants, dynamic response to disturbances in a plant, etc), then the mathematical model would consist of a set of differential equations or a mixed set of differential and algebraic equations. [Pg.80]

Different processes like eddy turbulence, bottom current, stagnation of flows, and storm-water events can be simulated, using either laminar or turbulent flow model for simulation. All processes are displayed in real-time graphical mode (history, contour graph, surface, etc.) you can also record them to data files. Thanks to innovative sparse matrix technology, calculation process is fast and stable a large number of layers in vertical and horizontal directions can be used, as well as a small time step. You can hunt for these on the Web. [Pg.305]

This involves knowledge of chemistry, by the factors distinguishing the micro-kinetics of chemical reactions and macro-kinetics used to describe the physical transport phenomena. The complexity of the chemical system and insufficient knowledge of the details requires that reactions are lumped, and kinetics expressed with the aid of empirical rate constants. Physical effects in chemical reactors are difficult to eliminate from the chemical rate processes. Non-uniformities in the velocity, and temperature profiles, with interphase, intraparticle heat, and mass transfer tend to distort the kinetic data. These make the analyses and scale-up of a reactor more difficult. Reaction rate data obtained from laboratory studies without a proper account of the physical effects can produce erroneous rate expressions. Here, chemical reactor flow models using matliematical expressions show how physical... [Pg.1116]

System models follow the normal process flow. [Pg.121]

As mentioned in Section 11.3, fluidized-bed reactors are difficult to scale. One approach is to build a cold-flow model of the process. This is a unit in which the solids are fluidized to simulate the proposed plant, but at ambient temperature and with plain air as the fluidizing gas. The objective is to determine the gas and solid flow patterns. Experiments using both adsorbed and nonadsorbed tracers can be used in this determination. The nonadsorbed tracer determines the gas-phase residence time using the methods of Chapter 15. The adsorbed tracer also measures time spent on the solid surface, from which the contact time distribution can be estimated. See Section 15.4.2. [Pg.430]

The main part of the paper consists in first formulating a DIFF for a data set of body component isotopic compositions when fed on known diets, next developing a flow-model appropriate to this data set whose behaviour can then be compared with the DIFF Many of the issues raised in this process help to provide an understanding for the wider questions posed in the introduction. [Pg.213]

The statistic models consider surface roughness as a stochastic process, and concern the averaged or statistic behavior of lubrication and contact. For instance, the average flow model, proposed by Patir and Cheng [2], combined with the Greenwood and Williamsons statistic model of asperity contact [3] has been one of widely accepted models for mixed lubrication in early times. [Pg.116]

Contextual design is a flexible software design approach that collects multiple customer-centered techniques into an integrated design process [7]. The approach is centered around contextual inquiry sessions in which detailed information is gathered about the way individual people work and use systems and the associated information flow. The data from each contextual inquiry session are used to create sequence models that map the exact workflow in a session along with any information breakdowns, flow models that detail the flow of information between parties and systems (much akin to but less formal... [Pg.234]

Airlift loop reactor (ALR), basically a specially structured bubble column, has been widely used in chemical industry, biotechnology and environmental protection, due to its high efficiency in mixing, mass transfer, heat transfer etc [1]. In these processes, multiple reactions are commonly involved, in addition to their complicated aspects of mixing, mass transfer, and heat transfer. The interaction of all these obviously affects selectivity of the desired products [2]. It is, therefore, essential to develop efficient computational flow models to reveal more about such a complicated process and to facilitate design and scale up tasks of the reactor. However, in the past decades, most involved studies were usually carried out in air-water system and the assumed reactor constructions were oversimplified which kept itself far away from the real industrial conditions [3] [4]. [Pg.525]


See other pages where Process flow modeling is mentioned: [Pg.67]    [Pg.53]    [Pg.176]    [Pg.67]    [Pg.53]    [Pg.176]    [Pg.3]    [Pg.9]    [Pg.79]    [Pg.91]    [Pg.158]    [Pg.205]    [Pg.287]    [Pg.513]    [Pg.295]    [Pg.72]    [Pg.1907]    [Pg.330]    [Pg.811]    [Pg.812]    [Pg.1117]    [Pg.817]    [Pg.295]    [Pg.474]    [Pg.117]    [Pg.264]    [Pg.53]    [Pg.125]   
See also in sourсe #XX -- [ Pg.347 ]




SEARCH



Process flow

Process flow processing

© 2024 chempedia.info