Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Process, continuous acids

Devising an economical method of producing agricultural-grade potassium phosphates from potassium chloride and wet-process phosphoric acid has been the subject of intense agricultural—chemical research (37—39). Limited quantities have been produced industrially. The impact on the overall quantities of phosphoms and potassium compounds consumed by the fertilizer industry is small. Because potassium phosphates are an excellent source of two essential fertilizer elements, this research is expected to continue. [Pg.536]

The submerged culture process continues to increase in terms of the percentage of dtric acid produced compared to that produced by the surface culture method. Tower bioreactors are preferred over stirred reactors because they cost less, there is less risk of contamination and they are less limited by size. [Pg.135]

The shikimate pathway is the major route in the biosynthesis of ubiquinone, menaquinone, phyloquinone, plastoquinone, and various colored naphthoquinones. The early steps of this process are common with the steps involved in the biosynthesis of phenols, flavonoids, and aromatic amino acids. Shikimic acid is formed in several steps from precursors of carbohydrate metabolism. The key intermediate in quinone biosynthesis via the shikimate pathway is the chorismate. In the case of ubiquinones, the chorismate is converted to para-hydoxybenzoate and then, depending on the organism, the process continues with prenylation, decarboxylation, three hydroxy-lations, and three methylation steps. - ... [Pg.102]

After the food is swallowed, the digestive process continues in the stomach where the food is attacked by stomach acid. In fact, stomach acid is concentrated hydrochloric acid. The hydrochloric acid, along with an enzyme called pepsin, breaks down proteins in the food. Pepsin can only function in the low pH environment of the stomach. The hydrochloric acid is needed to maintain the low pH that pepsin needs to function. [Pg.75]

L and the D/L ratio approaches zero. After the death of the living organism, proteins start to spontaneously break down. An inter-conversion of the amino acids occurs from one chiral form (L) to a mixture of D- and L- forms following protein degradation this process is called amino acid racemisation. The extent of racemisation is measured by the ratio of D/L isomers and increases as a function of time and temperature. The longer the racemisation process continues the closer to 1 the ratio between the D- and L-forms becomes. If the D/L ratio is <1 it may be possible to use it to estimate age. The D/L ratio of aspartic acid and isoleucine are the most widely used for this dating technique [104]. Dates have been obtained as old as 200 000 years. However, it has been used mainly to date samples in the 5000 100 000 year range. Recent studies [ 105] mention an estimation of the method accuracy to be around 20%. [Pg.252]

Essentially, all methods of synthesis are variations of the reaction of acetylchloride, acetic anhydride or ketene11 with salicylic acid using a variety of catalysts such as pyridine12 or sulfuric acid13 and reaction conditions (c.f. 14). The preparation of aspirin labeled with a i4c iaj-,eie(j acetyl group has also been reported.15 Efforts to improve the commercial processes continue to the present day. [Pg.8]

In the liquid acid-catalyzed processes, the hydrocarbon phase and the acid phase are only slightly soluble in each other in the two-phase stirred reactor, the hydrocarbon phase is dispersed as droplets in the continuous acid phase. The reaction takes place at or close to the interface between the hydrocarbon and the acid phase. The overall reaction rate depends on the area of the interface. Larger interfacial areas promote more rapid alkylation reactions and generally result in higher quality products. The alkene is transported through the hydrocarbon phase to the interface, and, upon contact with the acid, forms an acid-soluble ester, which slowly decomposes in the acid phase to give a solvated... [Pg.275]

Zeolite catalysts play a vital role in modern industrial catalysis. The varied acidity and microporosity properties of this class of inorganic oxides allow them to be applied to a wide variety of commercially important industrial processes. The acid sites of zeolites and other acidic molecular sieves are easier to manipulate than those of other solid acid catalysts by controlling material properties, such as the framework Si/Al ratio or level of cation exchange. The uniform pore size of the crystalline framework provides a consistent environment that improves the selectivity of the acid-catalyzed transformations that form C-C bonds. The zeoHte structure can also inhibit the formation of heavy coke molecules (such as medium-pore MFl in the Cyclar process or MTG process) or the desorption of undesired large by-products (such as small-pore SAPO-34 in MTO). While faujasite, morden-ite, beta and MFl remain the most widely used zeolite structures for industrial applications, the past decade has seen new structures, such as SAPO-34 and MWW, provide improved performance in specific applications. It is clear that the continued search for more active, selective and stable catalysts for industrially important chemical reactions will include the synthesis and application of new zeolite materials. [Pg.528]

The first step is to dissolve the impure solid in the minimum volume of an appropriate solvent. A small volume of hot solvent (water) is added to the impure solid (benzoic acid) and the mixture is heated. If the solid does not fully dissolve, more solvent is added. This process continues until all the solid has dissolved. [Pg.92]

The leaving group is the enolate anion of acetyl-CoA, and the reaction thus cleaves off a two-carbon fragment from the original fatty acyl-CoA. Since the nucleophile is coenzyme A, the other product is also a coenzyme A ester. In fact, the reaction generates a new fatty acyl-CoA, shorter by two carbons, which can re-enter the P-oxidation cycle. Most natural fatty acids have an even number of carbons, so the process continues until the original fatty acid chain is cleaved completely to acetyl-CoA fragments. [Pg.388]

As the mRJSlA leaves the cell nucleus in which it was created and enters the cytoplasm, it binds with specialized structures called ribosomes, as shown in Figure 13.36. Ribosomes are microscopic complexes of rRNA and proteins, and they are the site where proteins are built. As the mRNA is scrolled sequentially over the ribosome, the anticodon end of a free tRNA molecule binds to an mRNA codon. In this manner, tRNA molecules and their tag-along amino acids are placed adjacent to one another along the mRNA strand. The amino acids then chemically bond with one another, forming a long polypeptide chain that breaks away from the tRNA as it forms. This process continues until a stop mRNA codon, for which there are no tRNA anticodons, is encountered. At this point, the primary structure of a new protein has been built. [Pg.458]

The carboxyl groups of the amino acids are converted to reactive acyl adenylates by reaction with ATP, just as in Eq. 10-1. Each "activated" amino acid is carried on a molecule of transfer RNA (tRNA) and is placed in the reactive site of a ribosome when the appropriate codon of the mRNA has moved into the site. The growing peptide chain is then transferred by a displacement reaction onto the amino group of the activated amino acid that is being added to the peptide chain. In this manner, new amino acids are added one at a time to the carboxyl end of the chain, which always remains attached to a tRNA molecule. The process continues until a stop signal in the mRNA ends the process and the completed protein chain is released from the ribosome. Details are given in Chapter 29. [Pg.518]

At the end of this sequence, the P-oxoacyl-CoA derivative is cleaved (Fig. 17-1, step e) by a thiolase (see also Eq. 13-35). One of the products is acetyl-CoA, which can be catabolized to C02 through the citric acid cycle. The other product of the thiolytic cleavage is an acyl-CoA derivative that is two carbon atoms shorter than the original acyl-CoA. This molecule is recycled through the P oxidation process, a two-carbon acetyl unit being removed as acetyl-CoA during each turn of the cycle (Fig. 17-1). The process continues until the fatty acid chain is completely degraded. [Pg.940]


See other pages where Process, continuous acids is mentioned: [Pg.267]    [Pg.267]    [Pg.152]    [Pg.226]    [Pg.172]    [Pg.449]    [Pg.34]    [Pg.40]    [Pg.341]    [Pg.457]    [Pg.377]    [Pg.43]    [Pg.1072]    [Pg.390]    [Pg.274]    [Pg.121]    [Pg.590]    [Pg.636]    [Pg.439]    [Pg.127]    [Pg.330]    [Pg.365]    [Pg.521]    [Pg.45]    [Pg.103]    [Pg.187]    [Pg.152]    [Pg.114]    [Pg.98]    [Pg.340]    [Pg.443]    [Pg.39]    [Pg.149]    [Pg.92]    [Pg.123]    [Pg.172]    [Pg.449]    [Pg.377]   
See also in sourсe #XX -- [ Pg.19 , Pg.315 ]




SEARCH



Acetic Acid Dehydration via Continuous Process

Acid process

Acidity continued

Acids continued

Continuous processes

Continuous processing

Nitric acid continued processes

Process, continuous carboxylic acids

© 2024 chempedia.info