Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Procedure, catalytic converters

To counter the elevated emissions associated with enrichment, the EPA has adopted supplemental federal test procedures. The new laboratory test procedures contain higher speeds, higher acceleration and deceleration rates, rapid speed changes, and a test that requires the air conditioning to be in operation. These tests increase the probability that vehicles will go into enrichment under laboratory test conditions. Hence, manufacturers have an incentive to reduce the frequency of enrichment occurrence in the real world. Future catalytic converters and emissions control systems will be resistant to the high-temperature conditions associated with engine load, and will be less likely to require enrichment for protection. Thus, enrichment contributions to emissions will continue to decline. [Pg.455]

This reaction was applied to the synthesis of quinonoid natural products [34]. Propargyl bromides 62 a and 62b, which were prepared from prenyl bromide and phytyl bromide by a standard procedure, were converted to the corresponding aluminum reagents by reaction with powdered aluminum and a catalytic amount of mercuric chloride [35]. Then the iodomagnesium salt of cyclopropanol hemiacetal was treated with these reagents [36] affording the prenyl derivative 63 a and the phytyl derivative 63 b in 49 and 50% yield, respectively (Scheme 26). [Pg.86]

Anhydrous RuO has a tetragonal rutile structure with a slightly distorted octahedral structure, there being two sets of Ru-0 distances at 1.917(8) and 1.999(8) A [645] and has an extensive chemistry as a heterogeneous oxidation catalyst, a topic beyond the scope of this book. It is rarely used as a precursor for Ru oxidations, the hydrated form RuO. nH O (for brevity written below simply as RuO ) being much more effective in this respect. A procedure for converting inactive RuO (presumably the anhydrous form) to the hydrated RuO used in catalytic oxidations has been described [243]. [Pg.70]

The Ziegler catalytic procedure for converting a-olefins to fatty alcohols and the methyl ester hydrogenation process are the important methods for preparing fatty alcohols. [Pg.503]

ICP-MS is useful for analysis of catalysts from two perspectives The composition of the catalysts must be carefully controlled, particularly because the active elements are often expensive. The catalysts are often finely distributed in a substrate material so their concentration in the bulk material may be quite low. Second, catalysts, particularly those used in automotive catalytic converters, can be a significant source of platinum group elements in the environment. Re and Pt have been measured in catalysts by ICP-MS [193], Procedures for the analysis of used catalytic converter materials by ICP-MS have been reported [355]. Accurate measurements are essential for many of these applications so isotope dilution-based concentration calibration is commonly used. [Pg.137]

Sometimes solving one problem leads to another. One such example involves the catalytic converters now required on all automobiles sold around much of the world. The purpose of these converters is to remove harmful pollutants such as CO and NO2 from automobile exhausts. The good news is that these devices are quite effective and have led to much cleaner air in congested areas. The bad news is that these devices produce significant amounts of nitrous oxide, N2O, commonly known as laughing gas because when inhaled it produces relaxation and mild inebriation. It was long used by dentists to make their patients more tolerant of some painful dental procedures. [Pg.81]

Three-way catalysts used in exhaust-gas catalytic converters of automobiles contain platinum, palladium, rhodium, zirconium, and cerium. Oki et al. have developed a method which concentrates these metals by means of a two-step crushing procedure (Kim et al., 2010 Oki et al. 2010). The process makes it possible to increase concentration of rare-earth metals by a factor of five by first demolishing the honeycomb structure, and then peeling off the surface. To date, no process leading to recovery of individual rare-earth metals has been described. [Pg.204]

According to an improved version of that procedure, primary amines (1) can be catalytically converted to nitriles (2) in the presence of the CuCl/py/O system with added 4 X molecular sieve, at 60 °C and 1... [Pg.333]

By this procedure, less stable alkenes may be catalytically converted into their more stable isomers (see below and margin). [Pg.494]

In the recent decade, catalytic oxidation of carbohydrates transposed to polysaccharides using highly reglo-selectlve and stable nitroxyde radical (2,2,6,6-tetramethylpiperidine-l-oxyl radical (TEMPO)) has become one of the most promising procedures to convert polysaccharides into the corresponding polyuronic acids. The method is veiy suitable for... [Pg.1018]

The reagent Is expensive and poisonous, consequently the hydroxylation procedure is employed only for the conversion of rare or expensive alkenes (e.g., in the steroid field) into the glycols. Another method for hydroxylation utilises catalytic amounts of osmium tetroxide rather than the stoichiometric quantity the reagent is hydrogen peroxide in tert.-butyl alcohol This reagent converts, for example, cyc/ohexene into cis 1 2- t/ohexanedlol. [Pg.894]

Trilialophenols can be converted to poly(dihaloph.enylene oxide)s by a reaction that resembles radical-initiated displacement polymerization. In one procedure, either a copper or silver complex of the phenol is heated to produce a branched product (50). In another procedure, a catalytic quantity of an oxidizing agent and the dry sodium salt in dimethyl sulfoxide produces linear poly(2,6-dichloro-l,4-polyphenylene oxide) (51). The polymer can also be prepared by direct oxidation with a copper—amine catalyst, although branching in the ortho positions is indicated by chlorine analyses (52). [Pg.330]

Tetrasubstituted phosphonium halides are just as effective as their ammonium counterparts. A combination of tetraphenylphosphonium bromide and either 18-crown-6 or polyethylene glycol dimethyl ether with spray-dried potassium fluoride converts 4-chlorobenzaldehyde to 4-fluorobenzaldehyde in 74% yield [67] In addition, the halogen of a primary alkyl chloride or bromide is easily displaced by fluorine in aqueous saturated potassium fluoride and a catalytic amount of hexadecyltributylphosphonium bromide [68] (Table 7 Procedure 4, p 194)... [Pg.191]

Certain starting materials may give rise to the non-selective formation of regioisomeric enolates, leading to a mixture of isomeric products. Furthermore a ,/3-unsaturated carbonyl compounds tend to polymerize. The classical Michael procedure (i.e. polar solvent, catalytic amount of base) thus has some disadvantages, some of which can be avoided by use of preformed enolates. The CH-acidic carbonyl compound is converted to the corresponding enolate by treatment with an equimolar amount of a strong base, and in a second step the a ,/3-unsaturated carbonyl compound is added—often at low temperature. A similar procedure is applied for variants of the aldol reaction. [Pg.202]

Recently Tanabe and co-workers have found that several alcohols were smoothly and efficiently tosylated using tosyl chloride/triethylamine and a catalytic amount of trimethylamine hydrochloride as reagents.6 Compared with the traditional method using pyridine as solvent, this procedure has the merit of much higher reaction rates, and it avoids the side reaction in which the desired tosylate is converted into the corresponding chloride. [Pg.42]

Amides are very weak nucleophiles, far too weak to attack alkyl halides, so they must first be converted to their conjugate bases. By this method, unsubstituted amides can be converted to N-substituted, or N-substituted to N,N-disubstituted, amides. Esters of sulfuric or sulfonic acids can also be substrates. Tertiary substrates give elimination. O-Alkylation is at times a side reaction. Both amides and sulfonamides have been alkylated under phase-transfer conditions. Lactams can be alkylated using similar procedures. Ethyl pyroglutamate (5-carboethoxy 2-pyrrolidinone) and related lactams were converted to N-alkyl derivatives via treatment with NaH (short contact time) followed by addition of the halide. 2-Pyrrolidinone derivatives can be alkylated using a similar procedure. Lactams can be reductively alkylated using aldehydes under catalytic hydrogenation... [Pg.513]


See other pages where Procedure, catalytic converters is mentioned: [Pg.78]    [Pg.112]    [Pg.114]    [Pg.278]    [Pg.198]    [Pg.307]    [Pg.75]    [Pg.112]    [Pg.307]    [Pg.76]    [Pg.137]    [Pg.154]    [Pg.419]    [Pg.461]    [Pg.1050]    [Pg.263]    [Pg.126]    [Pg.137]    [Pg.516]    [Pg.135]    [Pg.826]    [Pg.167]    [Pg.105]    [Pg.450]    [Pg.102]    [Pg.112]    [Pg.542]    [Pg.724]    [Pg.278]    [Pg.285]   
See also in sourсe #XX -- [ Pg.425 ]




SEARCH



Catalytic converter

Catalytic converter test procedure

© 2024 chempedia.info