Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Procedural behavior

In almost every case, there is an underlying reason why a person did not follow the established procedure. The investigation team has an obligation to try to find and fix the underlying cause for the failure to follow established procedure behavior. Typical symptoms and corresponding underlying system defects that can result in an employee failing to follow procedure include ... [Pg.87]

An always statement is used to model the procedural behavior of a circuit. Here is an example of an always statement that contains procedural assignment statements. [Pg.37]

In vapor-liquid equilibria, it is relatively easy to start the iteration because assumption of ideal behavior (Raoult s law) provides a reasonable zeroth approximation. By contrast, there is no obvious corresponding method to start the iteration calculation for liquid-liquid equilibria. Further, when two liquid phases are present, we must calculate for each component activity coefficients in two phases since these are often strongly nonlinear functions of compositions, liquid-liquid equilibrium calculations are highly sensitive to small changes in composition. In vapor-liquid equilibria at modest pressures, this sensitivity is lower because vapor-phase fugacity coefficients are usually close to unity and only weak functions of composition. For liquid-liquid equilibria, it is therefore more difficult to construct a numerical iteration procedure that converges both rapidly and consistently. [Pg.4]

The experimental conditions used to determine the CFPP do not exactly reflect those observed in vehicles the differences are due to the spaces in the filter mesh which are much larger in the laboratory filter, the back-pressure and the cooling rate. Also, research is continuing on procedures that are more representative of the actual behavior of diesel fuel in a vehicle and which correlate better with the temperature said to be operability , the threshold value for the Incident. In 1993, the CEN looked at two new methods, one called SFPP proposed by Exxon Chemicals (David et al., 1993), the other called AGELFI and recommended by Agip, Elf and Fina (Hamon et al., 1993). [Pg.215]

In principle, Chen, given the flux relations there is no difficulty in constructing differencial equations to describe the behavior of a catalyst pellet in steady or unsteady states. In practice, however, this simple procedure is obstructed by the implicit nature of the flux relations, since an explicit solution of usefully compact form is obtainable only for binary mixtures- In steady states this impasse is avoided by using certain, relations between Che flux vectors which are associated with the stoichiometry of Che chemical reaction or reactions taking place in the pellet, and the major part of Chapter 11 is concerned with the derivation, application and limitations of these stoichiometric relations. Fortunately they permit practicable solution procedures to be constructed regardless of the number of substances in the reaction mixture, provided there are only one or two stoichiomeCrically independent chemical reactions. [Pg.5]

In section 11.4 Che steady state material balance equations were cast in dimensionless form, therary itancifying a set of independent dimensionless groups which determine ice steady state behavior of the pellet. The same procedure can be applied to the dynamical equations and we will illustrate it by considering the case t f the reaction A - nB at the limit of bulk diffusion control and high permeability, as described by equations (12.29)-(12.31). [Pg.168]

In this formulation, the electron density is expressed as a linear combination of basis functions similar in mathematical form to HF orbitals. A determinant is then formed from these functions, called Kohn-Sham orbitals. It is the electron density from this determinant of orbitals that is used to compute the energy. This procedure is necessary because Fermion systems can only have electron densities that arise from an antisymmetric wave function. There has been some debate over the interpretation of Kohn-Sham orbitals. It is certain that they are not mathematically equivalent to either HF orbitals or natural orbitals from correlated calculations. However, Kohn-Sham orbitals do describe the behavior of electrons in a molecule, just as the other orbitals mentioned do. DFT orbital eigenvalues do not match the energies obtained from photoelectron spectroscopy experiments as well as HF orbital energies do. The questions still being debated are how to assign similarities and how to physically interpret the differences. [Pg.42]

Matrix QMC procedures, similar to configuration interaction treatments, have been devised in an attempt to calculate many states concurrently. These methods are not yet well developed, as evidenced by oscillatory behavior in the excited-state energies. [Pg.219]

The same products can be also obtained from 267 and benzaldehyde. This behavior indicates the presence of an active methylene group and supports the thiazolone structure (267a). Alkyl or aryl ethers of 267 are prepared by two different procedures (Scheme 139). [Pg.304]

Our objectives in this section are twofold to describe and analyze a mechanical model for a viscoelastic material, and to describe and interpret an experimental procedure used to study polymer samples. We shall begin with the model and then proceed to relate the two. Pay attention to the difference between the model and the actual observed behavior. [Pg.158]

Ion exchange (qv see also Chromatography) is an important procedure for the separation and chemical identification of curium and higher elements. This technique is selective and rapid and has been the key to the discovery of the transcurium elements, in that the elution order and approximate peak position for the undiscovered elements were predicted with considerable confidence (9). Thus the first experimental observation of the chemical behavior of a new actinide element has often been its ion-exchange behavior—an observation coincident with its identification. Further exploration of the chemistry of the element often depended on the production of larger amounts by this method. Solvent extraction is another useful method for separating and purifying actinide elements. [Pg.214]

Both of the alkaloids anhalamine (62) from l ophophora williamsii and lophocerine (63) from l ophocereus schotti were isolated (after the properties of purified mescaline had been noted) in the search for materials of similar behavior. Interestingly, lophocerine, isolated as its methyl ether, after dia2omethane treatment of the alkaU-soluble fraction of total plant extract, is racemic. It is not known if the alkaloid in the plant is also racemic or if the isolation procedure causes racemization. [Pg.541]

R = / -C H ), in low doses, exhibits the former behavior and is used primarily as an extradural agent in obstetrics. The lowest effective extradural concentration of etidocaine (21, X = CH, R = R = 2H, R = / -C H ), however, shows both adequate sensory and profound motor blockade so that it is useful in surgical situations where maximum neuromuscular blockade is necessary. In an isolated nerve preparation, bupivacaine blocks unmyelinated C fibers which are mainly responsible for pain perception at a much greater extent than the myelinated A fibers which carry motor impulses. It is postulated that absorption of bupivacaine by the vasculature at the site of injection, combined with the slow diffusion of this agent, results in an insufficient amount of the drug penetrating the large A fibers to cause motor conduction blockade. Clinically, motor block can be observed in some procedures. [Pg.414]

Thixotropy and Other Time Effects. In addition to the nonideal behavior described, many fluids exhibit time-dependent effects. Some fluids increase in viscosity (rheopexy) or decrease in viscosity (thixotropy) with time when sheared at a constant shear rate. These effects can occur in fluids with or without yield values. Rheopexy is a rare phenomenon, but thixotropic fluids are common. Examples of thixotropic materials are starch pastes, gelatin, mayoimaise, drilling muds, and latex paints. The thixotropic effect is shown in Figure 5, where the curves are for a specimen exposed first to increasing and then to decreasing shear rates. Because of the decrease in viscosity with time as weU as shear rate, the up-and-down flow curves do not superimpose. Instead, they form a hysteresis loop, often called a thixotropic loop. Because flow curves for thixotropic or rheopectic Hquids depend on the shear history of the sample, different curves for the same material can be obtained, depending on the experimental procedure. [Pg.168]

Typical patterns of stress—strain behavior and the relationship of molecular motion on stress—strain behavior have been discussed (10,18,19,21,49—51). At times, it becomes desirable to characterize stress—strain behavior numerically so that a large amount of information can be condensed and many fibers exhibiting different behaviors can be compared. Procedures for measurement of stress—strain parameters are described ia ASTMD3822 andD2101 (10). [Pg.455]

The sohd line in Figure 3 represents the potential vs the measured (or the appHed) current density. Measured or appHed current is the current actually measured in an external circuit ie, the amount of external current that must be appHed to the electrode in order to move the potential to each desired point. The corrosion potential and corrosion current density can also be deterrnined from the potential vs measured current behavior, which is referred to as polarization curve rather than an Evans diagram, by extrapolation of either or both the anodic or cathodic portion of the curve. This latter procedure does not require specific knowledge of the equiHbrium potentials, exchange current densities, and Tafel slope values of the specific reactions involved. Thus Evans diagrams, constmcted from information contained in the Hterature, and polarization curves, generated by experimentation, can be used to predict and analyze uniform and other forms of corrosion. Further treatment of these subjects can be found elsewhere (1—3,6,18). [Pg.277]

In a similar procedure, the atomizer test, which depends on the behavior of an advancing rather than a receding contact angle, a fine mist of water is apphed to the metal surface and the spreading of water is observed. On a clean surface, water spreads to a uniform film. With oleic acid as the test soil, the atomizer test can detect the presence of 10 mg of soil per cm, less than a monomolecular layer (115). For steel that is to be electroplated, the copper dip test is often employed. Steel is dipped into a cupric salt solution and the eveimess of the resulting metallic copper deposit is noted. [Pg.537]


See other pages where Procedural behavior is mentioned: [Pg.87]    [Pg.230]    [Pg.87]    [Pg.230]    [Pg.118]    [Pg.196]    [Pg.202]    [Pg.110]    [Pg.164]    [Pg.230]    [Pg.256]    [Pg.176]    [Pg.52]    [Pg.256]    [Pg.199]    [Pg.256]    [Pg.286]    [Pg.286]    [Pg.329]    [Pg.302]    [Pg.513]    [Pg.534]    [Pg.153]    [Pg.281]    [Pg.172]    [Pg.513]    [Pg.465]    [Pg.466]    [Pg.104]    [Pg.259]    [Pg.236]    [Pg.368]    [Pg.498]    [Pg.153]    [Pg.540]   
See also in sourсe #XX -- [ Pg.37 ]




SEARCH



Behavioral model design procedure

Behavioral observations operating procedures

Laboratory behavior, standard operating procedure

Operating procedures process behavior

The Problem of Anomalous Behavior Rethinking Instruction as Hierarchical Procedure

© 2024 chempedia.info