Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tertiary prevention

The Claisen condensation of t-butyl acetate with a methyl ester is a general route for the preparation of complex P-ketoesters.4 The reaction requires an excess of the enolate of t-butyl acetate to rapidly deprotonate the product and prevent tertiary alcohol formation. Some workers have also used excess LDA or t-butoxide for this purpose. [Pg.96]

All of these compounds undergo nucleophilic substitution reactions. As with other tertiary halides (Section 6.13A), the steric hindrance associated with having three bulky groups on the carbon bearing the halogen prevents tertiary allylic and tertiary benzylic halides from reacting by an 5 2 mechanism. They react with nucleophiles only by an S l mechanism. [Pg.708]

The reason for this is that reaction (i) is usually much slower than (ii) and (iii) so that the main reaction appears to be (Iv) (compare the preparation of tertiary butyl chloride from tertiary butyl alcohol and concentrated hydrochloric acid, Section 111,33). If the reaction is carried out in the presence of P3rridine, the latter combines with the hydrogen chloride as it is formed, thus preventing reactions (ii) and (iii), and a good yield of the ester is generally obtained. The differentiation between primary, secondary and tertiary alcohols with the aid of the Lucas reagent is described in Section III,27,(vii). [Pg.1067]

Hydrogenis prevented from forming a passivating layer on the surface by an oxidant additive which also oxidizes ferrous iron to ferric iron. Ferric phosphate then precipitates as sludge away from the metal surface. Depending on bath parameters, tertiary iron phosphate may also deposit and ferrous iron can be incorporated into the crystal lattice. When other metals are included in the bath, these are also incorporated at distinct levels to generate species that can be written as Zn2Me(P0 2> where Me can represent Ni, Mn, Ca, Mg, or Fe. [Pg.222]

Many proteins frequendy require the assistance of other protein molecules called molecular chaperonins, for assuming the fine tertiary stmcture in vivo. In E. coli, two such chaperonin molecules bind transientiy to newly synthesized polypeptide monomers, preventing them from aggregating prematurely, until the polypeptides attain their folded state (10). [Pg.211]

Amine oxides, prepared to protect tertiary amines during methylation and to prevent their protonation in diazotized aminopyridines, can be cleaved by reduction (e.g., SO2/H2O, 1 h, 22°, 63% yield H2/Pd-C, AcOH, AC2O, 7 h, 91% yield Zn/HCl, 30% yield). Photolytic reduction of an aromatic amine oxide has been reported [i.e., 4-nitropyridine A-oxide, 300 nm, (MeO)3PO/CH2Cl2, 15 min, 85-95% yieldl. ... [Pg.375]

The U.S. Clean Air Amendments of 1977 define two kinds of air quality standards primary standards, levels that will protect health but not necessarily prevent the other adverse effects of air pollution, and secondary standards, levels that will prevent all the other adverse effects of air pollution (Table 22-7). The amendments also define air quality levels that cannot be exceeded in specified geographic areas for "prevention of significant deterioration" (PSD) of the air of those areas. Although they are called "increments" over "baseline air quality" in the law, they are in effect tertiary standards, which are set at lower ambient levels than either the primary or secondary standards (Table 22-8). [Pg.377]

In the case of mechanism (6) there are materials available which completely prevent chain growth by reacting preferentially with free radicals formed to produce a stable product. These materials are known as inhibitors and include quinone, hydroquinone and tertiary butylcatechol. These materials are of particular value in preventing the premature polymerisation of monomer whilst in storage, or even during manufacture. [Pg.27]

Alkylation reactions are subject to the same constraints that affect all Sn2 reactions (Section 11.3). Thus, the leaving group X in the alkylating agent R—X can be chloride, bromide, iodide, or tosylate. The alkyl group R should be primary or methyl, and preferably should be allylic or benzylic. Secondary halides react poorly, and tertiary halides don t react at all because a competing E2 elimination of HX occurs instead. Vinylic and aryl halides are also unreactive because backside approach is sterically prevented. [Pg.855]

Effluent pretreatment is necessary when RO is used as tertiary treatment in order to prevent membranes filters form being blocked or abraded. UF offers a powerful tool for the reduction of fouling potential of RO/NF membranes [57]. A typical pretreatment consist of a MF allowing the removal of the large suspended solids form the WWTP effluent followed by UF unit which removes thoroughly suspended solids, colloidal material, bacteria, viruses and organic compounds from the filtrated water. The UF product is sent to the RO unit where dissolved salts are removed. [Pg.121]

In a case like this, E2 wins the competition, and no other mechanisms can snccessfnlly compete. Why not An Sn2 process cannot occnr at a reasonable rate becanse the snbstrate is tertiary (steric hindrance prevents an Sn2 from occnrring). And nnimolecnlar processes (El and SnI) cannot compete becanse they are too slow. Recall that the rate-determining step for an El or SnI process is the loss of a leaving gronp to form a carbocation, which is a slow step. Therefore, El and SnI conld only win the competition if the competing E2 process is extremely slow (when a weak base is nsed). However, when a strong base is nsed, E2 occnrs rapidly, so El and SnI cannot compete. [Pg.235]

Prevention of nitrosamine formation in other important commercial dinitroanilines such as trifluralin, benefin, isopropalin, profluralin, ethalfluralin and other tertiary amines is approached first eliminating sources of nitrosating agents from the reaction mixture prior to amination. [Pg.369]

Ketones can also be prepared from acyl chlorides by reaction at low temperature using an excess of acyl chloride. Tetrahydrofuran is the preferred solvent.91 The reaction conditions must be carefully controlled to prevent formation of tertiary alcohol by addition of a Grignard reagent to the ketone as it is formed. [Pg.637]

There is some increase in selectivity with functionally substituted carbenes, but it is still not high enough to prevent formation of mixtures. Phenylchlorocarbene gives a relative reactivity ratio of 2.1 1 0.09 in insertion reactions with i-propylbenzene, ethylbenzene, and toluene.212 For cycloalkanes, tertiary positions are about 15 times more reactive than secondary positions toward phenylchlorocarbene.213 Carbethoxycarbene inserts at tertiary C—H bonds about three times as fast as at primary C—H bonds in simple alkanes.214 Owing to low selectivity, intermolecular insertion reactions are seldom useful in syntheses. Intramolecular insertion reactions are of considerably more value. Intramolecular insertion reactions usually occur at the C—H bond that is closest to the carbene and good yields can frequently be achieved. Intramolecular insertion reactions can provide routes to highly strained structures that would be difficult to obtain in other ways. [Pg.936]

Selective oxidations are possible for certain bicyclic hydrocarbons.285 Here, the bridgehead position is the preferred site of initial attack because of the order of reactivity of C—H bonds, which is 3° > 2° > 1°. The tertiary alcohols that are the initial oxidation products are not easily further oxidized. The geometry of the bicyclic rings (Bredt s rule) prevents both dehydration of the tertiary bridgehead alcohols and further oxidation to ketones. Therefore, oxidation that begins at a bridgehead position... [Pg.1148]


See other pages where Tertiary prevention is mentioned: [Pg.438]    [Pg.438]    [Pg.282]    [Pg.200]    [Pg.148]    [Pg.328]    [Pg.735]    [Pg.89]    [Pg.359]    [Pg.435]    [Pg.16]    [Pg.46]    [Pg.7]    [Pg.11]    [Pg.326]    [Pg.178]    [Pg.551]    [Pg.247]    [Pg.76]    [Pg.76]    [Pg.899]    [Pg.452]    [Pg.699]    [Pg.1417]    [Pg.20]    [Pg.5]    [Pg.233]    [Pg.247]    [Pg.63]    [Pg.158]    [Pg.312]    [Pg.476]    [Pg.457]    [Pg.690]   
See also in sourсe #XX -- [ Pg.405 ]




SEARCH



Subject tertiary prevention

Tertiary prevention defined

© 2024 chempedia.info