Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparative solvent recycling

The final approach to the reduction of eluent consumption is the optimal recycling of solvents. Indeed, preparative and industrial chromatography can be designed as a unit operation that includes solvent recycling dry feed mixture is injected while dry separated compounds are recovered. Many techniques can be applied depending on the situation in isocratic (that is with a constant mobile phase composition) or gradient conditions, and with organic and/or supercritical eluents. [Pg.256]

In cases where mass transfer is rapid, as is the case with most small molecule separations, then isocratic elution can offer advantages such as automatic fraction reprocessing and solvent recycle. However, with larger synthetic objectives the rate of mass transfer is comparatively low so isocratic elution leads to band broadening and subsequently to recovery of the peptide at high dilution. Most preparative HPLC based peptide separations are carried out under gradient and overload conditions that allow for maximum throughput in terms of time and quantity. [Pg.82]

These conditions are used to generate results on the cost relationships. These results are obtained by solving the partial differential equations for different amounts loaded, column length and plate count to obtain chromatograms. The yield is calculated from each chromatogram. A surface of yield versus the amount loaded and the number of plates, table or surface is prepared. Then the flow rate, column length and amount loaded are optimized to the objective function 174]. No solvent recycling is assumed. [Pg.260]

Olefins Aromatics. The hydroboration and analysis of shale oil distillate fractions have been described previously (9). Whole shale oils were prepared for determination of olefin and aromatic content by the removal of the polar material on Florisil (30/60 mesh, used as received) by elution with cyclohexane. The Florisil-to-oil weight ratio was 20/1 and the elution was carried out for 24 hr with a solvent recycle chromatography column. [Pg.234]

The principles of green chemistry by adopting the most efficient and environmentally friendly processes should be practiced whenever possible in the HPLC laboratory. One obvious approach is reduction of solvent consumption by using solvent recycling for isocratic analysis and narrowbore LC columns. Another area is to find ways to reduce sample size and the number of sample preparation steps without sacrificing method performance.2 A case study to illustrate this principle for a tablet assay is shown in Table 11.1. Another example is an environmental analysis of soil/sediment sample3 is shown in Table 7.7. [Pg.270]

The figures quoted here are for concentrations where all the people exposed could detect, though not identify, an odour. Because they may be used in domestic preparations solvents are not, as a class, very odiferous materials and few can be detected at much below a 1 ppm level unlike mercaptans, which can be smelt at a low ppm level, and sulphides and aldehydes. The latter are often detectable in solvents that have been recovered and recycled and make such solvents hard to use in household formulations. [Pg.175]

Isopropylnaphthalenes can be prepared readily by the catalytic alkylation of naphthalene with propjiene. 2-lsopropylnaphthalene [2027-17-0] is an important intermediate used in the manufacture of 2-naphthol (see Naphthalenederivatives). The alkylation of naphthalene with propjiene, preferably in an inert solvent at 40—100°C with an aluminum chloride, hydrogen fluoride, or boron trifluoride—phosphoric acid catalyst, gives 90—95% wt % 2-isopropylnaphthalene however, a considerable amount of polyalkylate also is produced. Preferably, the propylation of naphthalene is carried out in the vapor phase in a continuous manner, over a phosphoric acid on kieselguhr catalyst under pressure at ca 220—250°C. The alkylate, which is low in di- and polyisopropylnaphthalenes, then is isomerized by recycling over the same catalyst at 240°C or by using aluminum chloride catalyst at 80°C. After distillation, a product containing >90 wt % 2-isopropylnaphthalene is obtained (47). [Pg.487]

Various processes involve acetic acid or hydrocarbons as solvents for either acetylation or washing. Normal operation involves the recovery or recycle of acetic acid, any solvent, and the mother Hquor. Other methods of preparing aspirin, which are not of commercial significance, involve acetyl chloride and saHcyHc acid, saHcyHc acid and acetic anhydride with sulfuric acid as the catalyst, reaction of saHcyHc acid and ketene, and the reaction of sodium saHcylate with acetyl chloride or acetic anhydride. [Pg.291]

The Ticona materials are prepared by continuous polymerisation in solution using metallocene catalysts and a co-catalyst. The ethylene is dissolved in a solvent which may be the comonomer 2-norbomene itself or another hydrocarbon solvent. The comonomer ratio in the reactor is kept constant by continuous feeding of both monomers. After polymerisation the catalyst is deactivated and separated to give polymers of a low residual ash content and the filtration is followed by several degassing steps with monomers and solvents being recycled. [Pg.280]

The type of CSPs used have to fulfil the same requirements (resistance, loadabil-ity) as do classical chiral HPLC separations at preparative level [99], although different particle size silica supports are sometimes needed [10]. Again, to date the polysaccharide-derived CSPs have been the most studied in SMB systems, and a large number of racemic compounds have been successfully resolved in this way [95-98, 100-108]. Nevertheless, some applications can also be found with CSPs derived from polyacrylamides [11], Pirkle-type chiral selectors [10] and cyclodextrin derivatives [109]. A system to evaporate the collected fractions and to recover and recycle solvent is sometimes coupled to the SMB. In this context the application of the technique to gas can be advantageous in some cases because this part of the process can be omitted [109]. [Pg.8]

In the first publication describing the preparative use of an enzymatic reaction in ionic liquids, Erbeldinger et al. reported the use of the protease thermolysin for the synthesis of the dipeptide Z-aspartame (Entry 6) [34]. The reaction rates were comparable to those found in conventional organic solvents such as ethyl acetate. Additionally, the enzyme stability was increased in the ionic liquid. The ionic liquid was recycled several times after the removal of non-converted substrates by extraction with water and product precipitation. Recycling of the enzyme has not been reported. It should be noted, however, that according to the log P concept described in the previous section, ethyl acetate - with a value of 0.68 - may interfere with the pro-... [Pg.339]

Polymer-supported reactions are a relatively recent development in synthetic organic chemistry. In an ideal case a reagent is prepared as part of a polymer which is then poured onto a column. The reactant is then passed through the column in a suitable solvent and the product is obtained free of both starting material and other reagents and is simply isolated by evaporation of the solvent. Ideally the polymer should be easily recyclable. [Pg.985]

A V -Carbonyldiimidazole (CDI) is prepared in a convenient and safe procedure from phosgene and imidazole as a non-toxic crystalline compound (m.p. 116-118 °C).[5],[6] It reacts almost quantitatively at room temperature or by short and moderate heating with an equimolar quantity of a carboxylic acid in tetrahydrofuran, chloroform, or similar inert solvents within a few minutes to give the corresponding carboxylic acid imidazolide, which is formed under release of carbon dioxide, together with one equivalent of readily separable and recyclable imidazole.Thus, this reaction leads under very mild conditions to the activation of a carboxylic acid appropriate for transacylation onto a nucleophile with an alcohol to an ester, with an amino compound to an amide or peptide, etc. [Pg.27]


See other pages where Preparative solvent recycling is mentioned: [Pg.440]    [Pg.276]    [Pg.287]    [Pg.33]    [Pg.271]    [Pg.459]    [Pg.419]    [Pg.79]    [Pg.422]    [Pg.279]    [Pg.35]    [Pg.386]    [Pg.52]    [Pg.812]    [Pg.139]    [Pg.1694]    [Pg.319]    [Pg.242]    [Pg.241]    [Pg.284]    [Pg.374]    [Pg.70]    [Pg.378]    [Pg.5]    [Pg.326]    [Pg.129]    [Pg.4]    [Pg.113]    [Pg.224]    [Pg.233]    [Pg.402]    [Pg.179]    [Pg.45]    [Pg.301]    [Pg.19]   
See also in sourсe #XX -- [ Pg.255 , Pg.256 , Pg.257 , Pg.258 ]




SEARCH



Preparation solvents

Solvent recyclability

Solvents recycling

© 2024 chempedia.info