Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Preparation refractive index

Because of the chemical inertness of the paraffin hydrocarbons and of the closely related cycZoparaffins, no satisfactory crystalline derivatives can be prepared. Reliance is therefore placed upon the physical properties (boding point, density, and refractive index) of the redistilled samples. These are collected together in Table III,6. [Pg.234]

Di- and poly-halogenated aliphatic hydrocarbons. No general procedure can be given for the preparation of derivatives of these compounds. Reliance must be placed upon their physical properties (b.p., density and refractive index) and upon any chemical reactions which they undergo. [Pg.292]

The low reactivity of aliphatic ethers renders the problem of the preparation of suitable crystalline derivatives a somewhat difficult one. Increased importance is therefore attached to the physical properties (boding point, density and refractive index) as a means for providing preliminary information. There are, however, two reactions based upon the cleavage of the ethers which are useful for characterisation. [Pg.315]

Location of the compound within a class (or homologous series) of compounds. Reference to the literature or to tables of the physical properties of the class (or classes) of organic compounds to which the substance has been assigned, will generally locate a number of compounds which boil or melt within 6° of the value observed for the unknown. If other physical properties e.g., refractive index and density for a hquid) are available, these will assist in deciding whether the unknown is identical with one of the known compounds. In general, however, it is more convenient in practice to prepare one, but preferably two, crystalhne derivatives of the substance. [Pg.1027]

Methylene iodide [75-11-6], CH2I2, also known as diio dome thane, mol wt 267.87, 94.76% I, mp 6.0°C, and bp 181°C, is a very heavy colorless Hquid. It has a density of 3.325 g/mL at 20°C and a refractive index of 1.7538 at 4°C. It darkens in contact with air, moisture, and light. Its solubiHty in water is 1.42 g/100 g H2O at 20°C it is soluble in alcohol, chloroform, ben2ene, and ether. Methylene iodide is prepared by reaction of sodium arsenite and iodoform with sodium hydroxide reaction of iodine, sodium ethoxide, and hydroiodic acid on iodoform the oxidation of iodoacetic acid with potassium persulfate and by reaction of potassium iodide and methylene chloride (124,125). Diiodoform is used for determining the density and refractive index of minerals. It is also used as a starting material in the manufacture of x-ray contrast media and other synthetic pharmaceuticals (qv). [Pg.366]

The final product of all the above processes is iron(III) oxide, a-Fe202, but its properties are deterrnined by the method of preparation. Thermal dehydration of goethite yields a pigment of lowest (4.5 g/cm ) density. The highest (5.2 g/cm ) density pigment is one prepared by two-stage calcination. The particle si2e varies from 0.3 to 4 p.m the refractive index varies from 2.94 to 3.22. [Pg.11]

Light-focusing plastic rods and other optical devices with graduated refractive indexes may use DADC and other monomers (29). Preparation and properties of plastic lenses from CR-39 are reviewed in reference 30. [Pg.83]

Transparent dentifrices can be prepared from certain xerogel siUcas through use of high levels of polyhydric alcohols. Clarity depends on matching the refractive indexes of the siUca and the Hquid base. Compositions for Hquid facial cleansers (68), shampoos (69), conditioning shampoos (70), dandmff shampoos (71), surfactant bars (72), toothpastes (73), and mouthwashes (74) have been pubUshed. [Pg.300]

Henderson and Sutherland have prepared a hydrocarbon synthetically which is possibly a modification of terpinene. They reduced thymo-hydroquinone, thus obtaining menthane-2-5-diol, which was heated for half an hour with twice its weight of sulphate of potash under a reflux condenser, and so yielded a terpene boiling at 179°, of specific gravity about 0 840 and refractive index 1-4779. [Pg.73]

In 1899 Thoms isolated an alcohol from Peru balsam oil, which he termed peruviol. This body was stated to have powerful antiseptic properties, but has not been further investigated until Schimmel Co. took up the subject. The oil after saponification was fractionated, and after benzyl alcohol had distilled over, a light oil with characteristic balsamic odour passed over. It boiled at 125° to 127° at 4 mm., and had a specific gravity 0 8987, optical rotation -1- 12° 22, and refractive index 1-48982. This body appeared to be identical with Hesse s nerolidol, whilst in physical and chemical properties it closely resembles peruviol. The characters of the various preparations were as follows —... [Pg.125]

The above values apply to natural dihydrocarveol from caraway oil. A specimen prepared by the reduction of carvone had a specific gravity 0-927 at 20° and refractive index 1-48168. i (r.ii4.j... [Pg.139]

The specific gravity, refractive index, and specific rotation given above are those recorded by Paolini and Divizia and are probably accurate since the a-santalol was prepared by regeneration from its strychnine phthalate. The values recorded for commercial santalol, prepared by fractional distillation, are as follows, and are the average values for the mixed santalols as they occur in sandalwood oil... [Pg.151]

Ethyl Benzoate.—This ester has not been found, so far, to occur naturally in essential oils. It has, however, been prepared by synthetic processes, for example, by condensing ethyl alcohol with benzoic acid by means of dry hydrochloric acid gas. Its odour is very similar to that of methyl benzoate (q.v.), but not quite so strong. It is an oil of specific gravity I OfilO, refractive index 1 5055, and boiling-point 213° at 745 mm. It is soluble in two volumes of 70 per cent, alcohol. [Pg.166]

To a solution of 93.8 g of the monoglycol ester in 500 ml of benzene, there are added 55 g of nicotinic acid chloride and 25 g of trimethylemine dissolved in 200 ml of benzene. The solution is stirred gently at a temperature of 60°C for two hours. After this time, the solution is cooled and washed successively with water, dilute hydrochloric acid, dilute ammonia and water until neutrality, it is dried over anhydrous sodium sulfate, and the sol vent Is evaporated under vacuum In this wey llOg of glycol 2-(p-chlorophenoxy)-2-methylpropionate nico-tlnate Is prepared, which represents a yield of 84%. The product is a sllghly yellow oil having a refraction index of no = 1.5422 and which is distilled with decomposition et 214°C at a pressure of 0.3 mm. [Pg.608]


See other pages where Preparation refractive index is mentioned: [Pg.1081]    [Pg.175]    [Pg.9]    [Pg.176]    [Pg.252]    [Pg.366]    [Pg.366]    [Pg.268]    [Pg.329]    [Pg.450]    [Pg.16]    [Pg.83]    [Pg.248]    [Pg.127]    [Pg.189]    [Pg.315]    [Pg.220]    [Pg.125]    [Pg.24]    [Pg.624]    [Pg.126]    [Pg.62]    [Pg.684]    [Pg.121]    [Pg.116]    [Pg.847]    [Pg.386]    [Pg.188]    [Pg.53]    [Pg.79]    [Pg.164]    [Pg.170]    [Pg.142]    [Pg.20]    [Pg.147]    [Pg.375]    [Pg.126]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



INDEX preparation

© 2024 chempedia.info