Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Premixed flames temperatures

As the premixed-flame temperature decreases, conditions may be calculated for which the second reactant also begins to leak through the reaction zone in appreciable quantities. An asymptotic analysis may be developed for which, in the reaction zone, the factor cp — remains... [Pg.81]

Flame Types and Their Characteristics. There are two main types of flames diffusion and premixed. In diffusion flames, the fuel and oxidant are separately introduced and the rate of the overall process is determined by the mixing rate. Examples of diffusion flames include the flames associated with candles, matches, gaseous fuel jets, oil sprays, and large fires, whether accidental or otherwise. In premixed flames, fuel and oxidant are mixed thoroughly prior to combustion. A fundamental understanding of both flame types and their stmcture involves the determination of the dimensions of the various zones in the flame and the temperature, velocity, and species concentrations throughout the system. [Pg.517]

Surface combustion devices are designed for fully premixing the gaseous fuel and air and burning it on a porous radiant surface. The close coupling of the combustion process with the burner surface results in low flame temperatures and, consequently, low NO formation. Surface materials can include ceramic fibers, reticulated ceramics, and metal alloy mats. This approach allows the burner shape to be customized to match the heat transfer profile with the application. [Pg.2392]

FIGURE 4-1. Concentration and temperature profiles through a premixed flame. [Pg.60]

The chronology of the most remarkable contributions to combustion in the early stages of its development is as follows. In 1815, Sir Humphry Davy developed the miner s safety lamp. In 1826, Michael Faraday gave a series of lectures and wrote The Chemical History of Candle. In 1855, Robert Bunsen developed his premixed gas burner and measured flame temperatures and flame speed. Francois-Ernest Mallard and Emile Le Chatelier studied flame propagation and proposed the first flame structure theory in 1883. At the same time, the first evidence of detonation was discovered in 1879-1881 by Marcellin Berthelot and Paul Vieille this was immediately confirmed in 1881 by Mallard and Le Chatelier. In 1899-1905, David Chapman and Emile Jouguet developed the theory of deflagration and detonation and calculated the speed of detonation. In 1900, Paul Vieille provided the physical explanation of detonation... [Pg.1]

Laminar flame speed is one of the fundamental properties characterizing the global combustion rate of a fuel/ oxidizer mixture. Therefore, it frequently serves as the reference quantity in the study of the phenomena involving premixed flames, such as flammability limits, flame stabilization, blowoff, blowout, extinction, and turbulent combustion. Furthermore, it contains the information on the reaction mechanism in the high-temperature regime, in the presence of diffusive transport. Hence, at the global level, laminar flame-speed data have been widely used to validate a proposed chemical reaction mechanism. [Pg.44]

Consider a planar premixed flame front, such as that sketched in Figure 5.1.1. For the moment, we will be interested only in long length scales and we will treat the flame as an infinitely thin interface that transforms cold reactive gas, at temperature and density T p, into hot burnt gas at temperature and density T, A.-The flame front propagates at speed Sl into the xmbumt gas. We place ourselves in the reference frame of the front, so cold gas enters the front at speed = Su and because of thermal expansion, the hot gases leave the front at velocity 14 = Sl(Po/a)- The density ratio, Po/Pb, is roughly equal to the... [Pg.68]

One significant result from the studies of stretched premixed flames is that the flame temperature and the consequent burning intensity are critically affected by the combined effects of nonequidiffusion and aerodynamic stretch of the mixture (e.g.. Refs. [1-7]). These influences can be collectively quantified by a lumped parameter S (Le i-l)x, where Le is the mixture Lewis number and K the stretch rate experienced by the flame. Specifically, the flame temperature is increased if S > 0, and decreased otherwise. Since Le can be greater or smaller than unity, while K can be positive or negative, the flame response can reverse its trend when either Le or v crosses its respective critical value. For instance, in the case of the positively stretched, counterflow flame, with k>0, the burning intensity is increased over the corresponding unstretched, planar, one-dimensional flame for Le < 1 mixtures, but is decreased for Le > 1 mixtures. [Pg.118]

It is also well known that there exist different extinction modes in the presence of radiative heat loss (RHL) from the stretched premixed flame (e.g.. Refs. [8-13]). When RHL is included, the radiative flames can behave differently from the adiabatic ones, both qualitatively and quantitatively. Figure 6.3.1 shows the computed maximum flame temperature as a function of the stretch rate xfor lean counterflow methane/air flames of equivalence ratio (j) = 0.455, with and without RHL. The stretch rate in this case is defined as the negative maximum of the local axial-velocity gradient ahead of the thermal mixing layer. For the lean methane/air flames,... [Pg.118]

Consider Equations (6-10) that represent the CVD reactor problem. This is a boundary value problem in which the dependent variables are velocities (u,V,W), temperature T, and mass fractions Y. The mathematical software is a stand-alone boundary value solver whose first application was to compute the structure of premixed flames.Subsequently, we have applied it to the simulation of well stirred reactors,and now chemical vapor deposition reactors. The user interface to the mathematical software requires that, given an estimate of the dependent variable vector, the user can return the residuals of the governing equations. That is, for arbitrary values of velocity, temperature, and mass fraction, by how much do the left hand sides of Equations (6-10) differ from zero ... [Pg.348]

In flame extinction studies the maximum temperature is used often as the ordinate in bifurcation curves. In the counterflowing premixed flames we consider here, the maximum temperature is attained at the symmetry plane y = 0. Hence, it is natural to introduce the temperature at the first grid point along with the reciprocal of the strain rate or the equivalence ratio as the dependent variables in the normalization condition. In this way the block tridiagonal structure of the Jacobian can be maintained. The flnal form of the governing equations we solve is given by (2.8)-(2.18), (4.6) and the normalization condition... [Pg.411]

The quantity rTF o/To2,oo is the ratio of stoichiometric oxygen to fuel mass ratio divided by the available or supplied oxygen to fuel mass fractions. In contrast, for the premixed adiabatic flame temperature,... [Pg.247]

Equation (9.103) can give an estimate for the flame thickness that is similar to that of the premixed flame by using Equation (9.100) and an estimate of 3 for the temperature ratio ... [Pg.275]

Macek [27] examined the flammability limits for premixed fuel-air systems and small diffusion flames under natural convection conditions, and computed the equilibrium flame temperature for these flame systems. Data were considered for the alkanes and alcohols at their measured premixed lower flammability limits, and at their measured... [Pg.277]

Figure 9.21 Adiabatic flame temperatures at extinction for premixed and diffusion flames (from Macek [26])... Figure 9.21 Adiabatic flame temperatures at extinction for premixed and diffusion flames (from Macek [26])...

See other pages where Premixed flames temperatures is mentioned: [Pg.466]    [Pg.81]    [Pg.407]    [Pg.81]    [Pg.466]    [Pg.81]    [Pg.407]    [Pg.81]    [Pg.9]    [Pg.518]    [Pg.530]    [Pg.399]    [Pg.403]    [Pg.491]    [Pg.56]    [Pg.1175]    [Pg.4]    [Pg.36]    [Pg.61]    [Pg.64]    [Pg.70]    [Pg.148]    [Pg.155]    [Pg.190]    [Pg.192]    [Pg.195]    [Pg.479]    [Pg.547]    [Pg.7]    [Pg.136]    [Pg.193]    [Pg.203]    [Pg.262]    [Pg.278]    [Pg.278]   
See also in sourсe #XX -- [ Pg.231 ]




SEARCH



Premix

Premixed

Premixed flame

Premixers

© 2024 chempedia.info