Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Precision method development

Method Transfer. Method transfer involves the implementation of a method developed at another laboratory. Typically the method is prepared in an analytical R D department and then transferred to quahty control at the plant. Method transfer demonstrates that the test method, as mn at the plant, provides results equivalent to that reported in R D. A vaUdated method containing documentation eases the transfer process by providing the recipient lab with detailed method instmctions, accuracy and precision, limits of detection, quantitation, and linearity. [Pg.369]

The determination of polarisation curves of metals by means of constant potential devices has contributed greatly to the knowledge of corrosion processes and passivity. In addition to the use of the potentiostat in studying a variety of mechanisms involved in corrosion and passivity, it has been applied to alloy development, since it is an important tool in the accelerated testing of corrosion resistance. Dissolution under controlled potentials can also be a precise method for metallographic etching or in studies of the selective corrosion of various phases. The technique can be used for establishing optimum conditions of anodic and cathodic protection. Two of the more recent papers have touched on limitations in its application and differences between potentiostatic tests and exposure to chemical solutions. ... [Pg.1107]

It is seen that, although the dimensions and particle sizes may not be precisely matched, all three columns are of a size closely similar to those commercially available with, perhaps, the exception of the long high efficiency column. The small 3 cm column is excellent for the preliminary assessment of a sample. As a result of its size it does not use large volumes of solvent and can be quickly reconditioned after a separation in readiness for the next run. It is very convenient for choosing the best phase system in method development. The other columns would be chosen on a basis of the efficiency required to separate the critical pair in the reduced chromatogram of the sample for analysis. [Pg.116]

The accuracy and precision of the determinations were investigated. Recovery was found to be 101 2.0% for a range of volumetrically mixed samples and the relative standard deviation (RSD), for a standard injected 23 times over a period of 4.5 months, was found to be 1.1%. It should be noted that the performance of a method for samples based on standard materials may not be attainable when real samples are being determined and further method development may be required. [Pg.206]

Other features of an analytical method that should be borne in mind are its linear range, which should be as large as possible to allow samples containing a wide range of analyte concentrations to be analysed without further manipulation, and its precision and accuracy. Method development and validation require all of these parameters to be studied and assessed quantitatively. [Pg.269]

The fact that APCl and electrospray are soft ionization techniques is often advantageous because the molecular ion alone, in conjunction with HPLC separation, often provides adequate selectivity and sensitivity to allow an analytical method to be developed. Again, method development is important, particularly when more than one analyte is to be determined, when the effect of experimental parameters, such as pH, flow rate, etc., is not likely to be the same for each. Electrospray, in particular, is susceptible to matrix effects and the method of standard additions is often required to provide adequate accuracy and precision. [Pg.290]

The variational theorem which has been initially proved in 1907 (24), before the birthday of the Quantum Mechanics, has given rise to a method widely employed in Qnantnm calculations. The finite-field method, developed by Cohen andRoothan (25), is coimected to this method. The Stark Hamiltonian —fi.S explicitly appears in the Fock monoelectronic operator. The polarizability is derived from the second derivative of the energy with respect to the electric field. The finite-field method has been developed at the SCF and Cl levels but the difficulty of such a method is the well known loss in the numerical precision in the limit of small or strong fields. The latter case poses several interconnected problems in the calculation of polarizability at a given order, n ... [Pg.271]

A reference method is defined as a method of known and proven accuracy, thoroughly validated, and experimentally demonstrated to have negligible systematic errors and a high level of precision. Its development involves removing the principal systematic errors of the process, reducing them to tolerable levels, or when actual... [Pg.53]

Currently, nutrient analytical methods development often utilizes the method of standard additions as an intrinsic aspect of the development process. Essentially, the analyte to be measured exists in the matrix to which an identical known pure standard is added. The spiked and non-spiked matrix is extracted and analysed for the nutrient of interest. By spiking at increasing levels the researcher can establish, to some degree of certainty, the recovery and linearity of the standard additions. One can also evaluate data to determine reproducibility, precision, and accuracy. Unfortunately, the method of standard additions does not allow the evaluation of the method at nutrient concentrations less than 100 % of the endogenous level. [Pg.288]

Accurate, precise and sensitive analytical methods are important to the collection of data needed for regulatory decisions about pesticide registration. This article describes the various components of analytical method development, validation and implementation that affect the collection of pesticide residue distribution data for regulatory assessment of environmental fate and water quality impacts. Included in this discussion are both the technical needs of analytical methods and the attributes of study design and sample collection needed to develop data that are useful for regulatory purposes. [Pg.603]

Of the methods developed for the identification of hydrocarbon mixtures, only coupled gas chromatography-mass spectrometry holds any real promise of certain identification and this only at a prohibitive cost in time spent characterising minor peaks. It would be far more efficient to develop rapid screening procedures which would eliminate all but a few possibilities, and then use gas chromatography-mass spectrometry to isolate and identify a few key peaks to confirm the characterisation. This is precisely the scheme adopted independently by a number of laboratories. [Pg.384]

Study of chemical pathways in method development. Isotope dilution methods. Radioimmunoassay very important in biochemistry and medicine. Neutron activation analysis used for trace elements in geo-chemistry, semiconductor technology, pollution studies and forensic science. Relative precision of counting 1% if 104 counts are recorded. Assessment of pollution by radionuclides. [Pg.450]

In the OFRR, the wall thickness is important, as it determines the fraction of the light in the core that interacts evanescently with the gain medium when the solvent is of low RI. To precisely characterize the OFRR thickness noninvasively, we use the method developed previously22, in which various concentrations of water-ethanol mixtures are passed through the OFRR, and the WGM spectral shift in response to RI changes in the core is plotted as demonstrated in Fig. 19.4b. By matching the experimental sensitivity results with those obtained from our... [Pg.518]

Precise quantifications are an important quality in molecular biology. There are slight differences in the methods used for global and targeted proteomics. In experiments intended to visualize as many proteins as possible, it is highly desirable to have a parallel quantification method that builds on the display technique. For 2D gel electrophoresis, fluorescent staining methods are under development (Urwin and Jackson, 1993), but they still lack overall sensitivity. Labeling proteins with radioactive isotopes is the most precise method for quantification but is limited to cell cultures, and alternatives are desirable. Recently, a precise method... [Pg.27]

As soon as the protein is activated with the heterobifunctional crosslinker, the extinction coefficient determined for pure Amb a 1 no longer applies because the heterobifunctional crosslinker absorbs at 280 nm. At this step in the production of AIC, the manufacturing overhead cost requires the use of a fast protein assay, whereas the exact stoichiometry of the subsequent reaction dictates the use of an accurate and precise method. Hence we developed a new extinction coefficient for the activated protein based on experimental data and demonstrated that within the normal activation range of 9 to 12 crosslinkers per Amb a 1, the new extinction coefficient remained constant. The concentration of the purified activated Amb a 1 determined by this direct absorbance A280 method is more precise and accurate than could be assigned by a colorimetric assay. Consequently, the activated Amb a 1 concentration allows for the accurate addition of 1018 ISS required to consistently produce AIC with optimal activity. [Pg.24]

We have known for many years that large isotopic fractionations of heavy elements like Pb develop in the source regions of TIMS machines. Nonetheless, most of us held fast to the conventional wisdom that no significant mass-dependent isotopic fractionations were likely to occur in natural or laboratory systems for elements that are either heavy or engaged in bonds with a dominant ionic character. With the relatively recent appearance of new instrumentation like MC-ICP-MS and heroic methods development in TIMS analyses, it became possible to make very precise measurements of the isotopic ratios of some of these non-traditional elements, particularly if they comprise three or more isotopes. It was eminently reasonable to reexamine these systems in this new light. Perhaps atomic weights could be refined, or maybe there were some unexpected isotopic variations to discover. There were. [Pg.458]

Intermediate precision is another measure of the performance of the method where samples are tested and compared using different analysts, different equipment, different days, etc. This study is a measure of interlab variability and is a measure of the precision that can be expected within a laboratory. Intermediate precision is not required if a reproducibility study has been performed. Table 6 lists the ranges and suggested acceptance criteria for evaluation of precision during method development. [Pg.206]


See other pages where Precision method development is mentioned: [Pg.108]    [Pg.108]    [Pg.187]    [Pg.200]    [Pg.196]    [Pg.141]    [Pg.224]    [Pg.301]    [Pg.321]    [Pg.606]    [Pg.746]    [Pg.32]    [Pg.214]    [Pg.305]    [Pg.610]    [Pg.65]    [Pg.12]    [Pg.625]    [Pg.91]    [Pg.134]    [Pg.109]    [Pg.123]    [Pg.139]    [Pg.41]    [Pg.154]    [Pg.9]    [Pg.58]    [Pg.161]    [Pg.163]    [Pg.166]    [Pg.357]    [Pg.64]   
See also in sourсe #XX -- [ Pg.512 ]




SEARCH



Method development

Method precision

Precision development

© 2024 chempedia.info