Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potential differences conditions

Wlien an electrical coimection is made between two metal surfaces, a contact potential difference arises from the transfer of electrons from the metal of lower work function to the second metal until their Femii levels line up. The difference in contact potential between the two metals is just equal to the difference in their respective work fiinctions. In the absence of an applied emf, there is electric field between two parallel metal plates arranged as a capacitor. If a potential is applied, the field can be eliminated and at this point tire potential equals the contact potential difference of tlie two metal plates. If one plate of known work fiinction is used as a reference electrode, the work function of the second plate can be detennined by measuring tliis applied potential between the plates [ ]. One can detemiine the zero-electric-field condition between the two parallel plates by measuring directly the tendency for charge to flow through the external circuit. This is called the static capacitor method [59]. [Pg.1894]

Ideally a standard cell is constmcted simply and is characterized by a high constancy of emf, a low temperature coefficient of emf, and an emf close to one volt. The Weston cell, which uses a standard cadmium sulfate electrolyte and electrodes of cadmium amalgam and a paste of mercury and mercurous sulfate, essentially meets these conditions. The voltage of the cell is 1.0183 V at 20°C. The a-c Josephson effect, which relates the frequency of a superconducting oscillator to the potential difference between two superconducting components, is used by NIST to maintain the unit of emf. The definition of the volt, however, remains as the Q/A derivation described. [Pg.20]

It was established by feeding measurements that there was a potential difference of 0.45 V between the turbine shaft and the housing. A shaft slip-ring served for the necessaiy potential equalization (see Fig. 21-5). After this system was installed, the potential difference was only <5 mV. According to the operating conditions of the turbine, a current up to 1.5 A flows through this system. [Pg.473]

Figure 2 Variations in the neutron scattering amplitude or scattering length as a function of the atomic weight. The irregularities arise from the superposition of resonance scattering on a slowly increasing potential scattering. For comparison the scattering amplitudes for X rays under two different conditions are shown. Unlike neutrons, the X-ray case exhibits a monotonic increase as a function of atomic weight. Figure 2 Variations in the neutron scattering amplitude or scattering length as a function of the atomic weight. The irregularities arise from the superposition of resonance scattering on a slowly increasing potential scattering. For comparison the scattering amplitudes for X rays under two different conditions are shown. Unlike neutrons, the X-ray case exhibits a monotonic increase as a function of atomic weight.
The basic reasons for grounding an electrical supply system are to limit the electrical potential difference (voltage) between all uninsulated conductive equipment in the area to provide isolation of faults in the system and to limit overvoltage on the system under various conditions. In the case of a grounded system it is essential to ground at each separately derived voltage level. [Pg.515]

However, before proceeding with the description of simulation data, we would like to comment the theoretical background. Similarly to the previous example, in order to obtain the pair correlation function of matrix spheres we solve the common Ornstein-Zernike equation complemented by the PY closure. Next, we would like to consider the adsorption of a hard sphere fluid in a microporous environment provided by a disordered matrix of permeable species. The fluid to be adsorbed is considered at density pj = pj-Of. The equilibrium between an adsorbed fluid and its bulk counterpart (i.e., in the absence of the matrix) occurs at constant chemical potential. However, in the theoretical procedure we need to choose the value for the fluid density first, and calculate the chemical potential afterwards. The ROZ equations, (22) and (23), are applied to decribe the fluid-matrix and fluid-fluid correlations. These correlations are considered by using the PY closure, such that the ROZ equations take the Madden-Glandt form as in the previous example. The structural properties in terms of the pair correlation functions (the fluid-matrix function is of special interest for models with permeabihty) cannot represent the only issue to investigate. Moreover, to perform comparisons of the structure under different conditions we need to calculate the adsorption isotherms pf jSpf). The chemical potential of a... [Pg.313]

Assuming that the concentrations of ATP, ADP, and P in chloroplasts are 3 mM, 0.1 mM, and 10 mM, respectively, what is the AG for ATP synthesis under these conditions Photosynthetic electron transport establishes the proton-motive force driving photophosphorylation. What redox potential difference is necessary to achieve ATP synthesis under the foregoing conditions, assuming an electron pair is transferred per molecule of ATP generated ... [Pg.740]

Crystalline polymers are pressure-sensitive materials due to their weak interchain potential. Therefore, they have different crystal structures under different conditions. [Pg.295]

An aqueous electrolyte solution consists of a variety of charged and uncharged species, e.g. cations, anions, water dipoles, organic molecules, trace impurities, etc. which under equilibrium conditions are randomly oriented so that within the solution there is no net preferentially directed field. However, under the influence of a potential difference, the charge will be transported through the solution by cations and anions that migrate to... [Pg.1165]

This value does not express the actual result since side and/or parallel reactions (e.g., H+ or 02 reduction) are not considered, but it does demonstrate the completeness of the cementation process and the effectiveness of this liquid-liquid extraction. During this extraction no external current flows through the phase boundary Hg (amalgam)/solution thereby establishing a potentiometric condition. The question of the potential difference at the phase boundary can be answered by constructing the experimentally accessible current-voltage curves for the reactions ... [Pg.230]

To obtain comparative values of the strengths of oxidising agents, it is necessary, as in the case of the electrode potentials of the metals, to measure under standard experimental conditions the potential difference between the platinum and the solution relative to a standard of reference. The primary standard is the standard or normal hydrogen electrode (Section 2.28) and its potential is taken as zero. The standard experimental conditions for the redox... [Pg.64]

For the Daniell element in Fig. 3, a potential difference A is obtained by calculation from the values in Fig. 5 according to Eq. (11) under equilibrum conditions the potential difference corresponds to the terminal voltage of the cell. [Pg.7]

A voltaic cell consists essentially of three parts two electrodes, from which the positive and negative electricity leave the cell, and an electrolyte in which the electrodes are contained. Its form is therefore that of an electrolytic cell, and the difference between the two lies only in the condition that in the former we produce an electric current through the agency of the material changes, whereas in the latter we induce these material changes by a current supplied from an external source the same arrangement may therefore serve as either. The direction in which the current flows through the cell will depend on the potential difference between its terminals. [Pg.455]

The condition that the solutions in bulk are electrically neutral, the potential difference being located in the surface of separation, requires that ... [Pg.472]

Conditions of equilibrium, 92 Conduction of heat, 48, 84, 454 Configuration, 22, 107 Connodal curve, 243 Conservation of energy, 35 Contact potential differences, 470 Continuity of states, 174 Corresponding states, 228, 237 Creighton. See Southern. [Pg.540]

Under most conditions, the process is spontaneous/ A chemical potential difference drives the reaction and AG < 0. When the reactants are separated as shown in Figure 9.3, the chemical potential difference can be converted to an electrical potential E. When the electrodes are connected through an external circuit, the electrical potential causes an electric current to flow. Because the electrical potential is the driving force for electrons to flow, it is sometimes... [Pg.475]

Under different conditions (in aqueous electrolyte) the selectivity of the cleavage reaction may be perturbed by the occurrence51-53 of a dimerization process. Thus, while the major process remains the two-electron reductive pathway, 20% of a dimer (y diketone) may be isolated from the cathodic reduction of PhC0CH2S02CH3. The absence of crosscoupling products when pairs of / -ketosulphones with different reduction potentials are reduced in a mixture may indicate that the dimerization is mainly a simple radical-radical coupling53 and not a nucleophilic substitution. [Pg.1011]

A third experimental configuration was proposed by Kolb and Hansen40 emersed electrodes. If an electrode is emersed from a solution while the control of the potential is maintained, the solvent layer dragged off with the metal (Fig. 3) would reproduce UHV conditions, but with potential control and at room temperature, as in the actual electrode situation. This appears to be the most convenient configuration for measuring 0. However, there are doubts that the solvent layer retains the properties of a bulk phase. It has in fact been demonstrated41 that a contact potential difference exists between an electrode in the emersed state and the same electrode regularly immersed in solution. [Pg.12]

Quantitatively, however, it is evident that directly measured A0 values are on average 0.2 to 0.3 eV higher than AX values. This shift in the potential scale has been discussed by Trasatti,31 34 who has attributed such a systematic difference to the different conditions of measurement (different temperatures, nonequivalence between thin water layers and bulk water, uncompensated partial charge transfer in UHV). For a more detailed discussion, the reader is referred to the original papers. [Pg.170]

Conversion of Earno into an absolute (UHV) scale rests on the values of ff-0 and for Hg used as areference surface. While the accuracy of is indisputable, the experimental value of contact potential difference between Hg and H20, are a subject of continued dispute. Efforts have been made in this chapter to try to highlight the elements of the problem. However, a specialized experimental approach to the measurement of 0 (and A0 upon water adsorption) of Hg would definitely remove any further ambiguity as well as any reasons not to accept certain conclusions. [Pg.190]


See other pages where Potential differences conditions is mentioned: [Pg.366]    [Pg.589]    [Pg.597]    [Pg.600]    [Pg.602]    [Pg.424]    [Pg.425]    [Pg.474]    [Pg.395]    [Pg.120]    [Pg.3]    [Pg.131]    [Pg.23]    [Pg.29]    [Pg.316]    [Pg.892]    [Pg.893]    [Pg.37]    [Pg.45]    [Pg.221]    [Pg.464]    [Pg.662]    [Pg.938]    [Pg.1217]    [Pg.236]    [Pg.281]    [Pg.61]    [Pg.557]    [Pg.410]    [Pg.551]    [Pg.9]   
See also in sourсe #XX -- [ Pg.42 ]




SEARCH



Conditional potential

Difference potential

© 2024 chempedia.info