Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Driving potential difference

In Eq 4.11, (E"x - E"M) is positive since E"x at the cathodic site is greater than E"u at the anodic site. Thus, the potential in the solution at the anodic site, ())s a, is greater than the potential in the solution at the cathodic site, < )s c, which is consistent with the overall electrochemical corrosion circuit. It follows that the driving potential difference for conventional current flow (Icorr) in the solution is ... [Pg.131]

Equation (7.51) can be interpreted either algebraically or electrically as was done for Newton s Law of cooling in convection or for Fourier s Law of conduction through composite materials. The electrical analogy for Equation (7.51) can be made by comparing ( 5, —/,) to the driving potential difference and Q, as the electrical current. [Pg.194]

In a vacuum (a) and under the effect of a potential difference of V volts between two electrodes (A,B), an ion (mass m and charge ze) will travel in a straight line and reach a velocity v governed by the equation, mv = 2zeV. At atmospheric pressure (b), the motion of the ion is chaotic as it suffers many collisions. There is still a driving force of V volts, but the ions cannot attain the full velocity gained in a vacuum. Instead, the movement (drift) of the ion between the electrodes is described by a new term, the mobility. At low pressures, the ion has a long mean free path between collisions, and these may be sufficient to deflect the ion from its initial trajectory so that it does not reach the electrode B. [Pg.375]

The fourth fully developed membrane process is electrodialysis, in which charged membranes are used to separate ions from aqueous solutions under the driving force of an electrical potential difference. The process utilizes an electrodialysis stack, built on the plate-and-frame principle, containing several hundred individual cells formed by a pair of anion- and cation-exchange membranes. The principal current appHcation of electrodialysis is the desalting of brackish groundwater. However, industrial use of the process in the food industry, for example to deionize cheese whey, is growing, as is its use in poUution-control appHcations. [Pg.76]

For the solute flux, it is assumed that chemical potential difference owing to pressure is negligible. Thus the driving force is almost entirely a result of concentration differences. The solute flux, J), is defined as in equation 6 ... [Pg.147]

Galvanic Corrosion. Galvanic corrosion occurs when two dissimilar metals are in contact in a solution. The contact must be good enough to conduct electricity, and both metals must be exposed to the solution. The driving force for galvanic corrosion is the electric potential difference that develops between two metals. This difference increases as the distance between the metals in the galvanic series increases. [Pg.267]

The primary driviag force for material transport comes from the chemical potential difference that exists between surfaces of dissimilar curvature within the system. The greater the curvature, ie, the finer the particle size, the greater the driving force for material transport and sintering. [Pg.311]

The most generally accepted theory of the coohng-tower heat-transfer process is that developed by Merkel (op. cit.). This analysis is based upon enthalpy potential difference as the driving force. [Pg.1162]

Generai description. Galvanic corrosion refers to the preferential corrosion of the more reactive member of a two-metal pair when the metals are in electrical contact in the presence of a conductive fluid (see Chap. 16, Galvanic Corrosion ). The corrosion potential difference, the magnitude of which depends on the metal-pair combination and the nature of the fluid, drives a corrosion reaction that simultaneously causes the less-noble pair member to corrode and the more-noble pair member to become even more noble. The galvanic series for various metals in sea water is shown in Chap. 16, Table 16.1. Galvanic potentials may vary with temperature, time, flow velocity, and composition of the fluid. [Pg.328]

Consideration of the basic elements characteristic of the galvanic corrosion process, as discussed above, points to the principles of sound preventive techniques. Since a galvanic potential difference is the driving force for corrosion reducing the magnitude of this difference can reduce or prevent galvanic corrosion. [Pg.363]

Exposure of the metal to an environment that is sufficiently aggressive to generate a potential difference capable of driving a galvanic corrosion reaction between the graphite and the iron... [Pg.376]

Galvanic anodes must not be backfilled with coke as with impressed current anodes. A strong corrosion cell would arise from the potential difference between the anode and the coke, which would lead to rapid destruction of the anode. In addition, the driving voltage would immediately collapse and finally the protected object would be seriously damaged by corrosion through the formation of a cell between it and the coke. [Pg.198]

Assuming that the concentrations of ATP, ADP, and P in chloroplasts are 3 mM, 0.1 mM, and 10 mM, respectively, what is the AG for ATP synthesis under these conditions Photosynthetic electron transport establishes the proton-motive force driving photophosphorylation. What redox potential difference is necessary to achieve ATP synthesis under the foregoing conditions, assuming an electron pair is transferred per molecule of ATP generated ... [Pg.740]

Image erasure. The potential differences due to latent image formation are removed by flooding the photoreceptors with a sufficiently intense light source to drive the surface potential to some uniformly low value (typically I00V corresponding to fields of 10 Vcni ) the photoreceptor is then ready for another print cycle. [Pg.750]

However, a potential may give rise to more than one type of flux. There are cross-effects A temperature difference can also result in diffusion, called thermal diffusion, and a concentration difference can result in a heat current. The general relation between fluxes 7, and the driving potentials A) is of the form of linear relations... [Pg.928]

Stainless steels each appear twice in the list. The more active potentials are those which the metal adopts when corroding as in a pit. The more cathodic potential is that adopted by the bare surface around the pit. The potential difference constitutes a significant driving force, analogous to the situation where the coupling of dissimilar metals such as copper and iron promotes the corrosion of the more anodic of the two (see below). [Pg.891]

The net electrochemical driving force is determined by two factors, the electrical potential difference across the cell membrane and the concentration gradient of the permeant ion across the membrane. Changing either one can change the net driving force. The membrane potential of a cell is defined as the inside potential minus the outside, i.e. the potential difference across the cell membrane. It results from the separation of charge across the cell membrane. [Pg.457]

Under most conditions, the process is spontaneous/ A chemical potential difference drives the reaction and AG < 0. When the reactants are separated as shown in Figure 9.3, the chemical potential difference can be converted to an electrical potential E. When the electrodes are connected through an external circuit, the electrical potential causes an electric current to flow. Because the electrical potential is the driving force for electrons to flow, it is sometimes... [Pg.475]

To drive a reaction in a nonspontaneous direction, the external supply must generate a potential difference greater than the potential difference that would be produced by the reverse reaction. For example,... [Pg.630]

Figure 7. Mechanism of the proton-translocating ubiquinol cytochrome c reductase (complex III) Q cycle. There is a potential difference of up to 150 mV across the hydrophobic core of this complex (potential barrier represented by the vertical broken line). Cytochromes hour and b N are heme groups on the same peptide subunits of complex III which can transfer electrons across the hydrophobic core. The movement of two electrons provides the driving force to transfer two protons from the matrix to the cytosol. Diffusion of UQ and UQHj, which are uncharged, in the hydrophobic core, and lipid bilayer of the inner membrane is not influenced by the membrane potential (see Nicholls and Ferguson, 1992). Figure 7. Mechanism of the proton-translocating ubiquinol cytochrome c reductase (complex III) Q cycle. There is a potential difference of up to 150 mV across the hydrophobic core of this complex (potential barrier represented by the vertical broken line). Cytochromes hour and b N are heme groups on the same peptide subunits of complex III which can transfer electrons across the hydrophobic core. The movement of two electrons provides the driving force to transfer two protons from the matrix to the cytosol. Diffusion of UQ and UQHj, which are uncharged, in the hydrophobic core, and lipid bilayer of the inner membrane is not influenced by the membrane potential (see Nicholls and Ferguson, 1992).
The electrochemical potential difference is used to drive a membrane-located ATP synthase which in the presence of P + ADP forms ATP (Figure 12-8). Scattered over the surface of the inner membrane are the phos-phorylating complexes, ATP synthase, responsible for the production of ATP (Figure 12-1). These consist of several protein subunits, collectively known as F, which project into the matrix and which contain the phosphorylation mechanism (Figure 12-8). These sub-... [Pg.96]

Although the correlation between ket and the driving force determined by Eq. (14) has been confirmed by various experimental approaches, the effect of the Galvani potential difference remains to be fully understood. The elegant theoretical description by Schmickler seems to be in conflict with a great deal of experimental results. Even clearer evidence of the k t dependence on A 0 has been presented by Fermin et al. for photo-induced electron-transfer processes involving water-soluble porphyrins [50,83]. As discussed in the next section, the rationalization of the potential dependence of ket iti these systems is complicated by perturbations of the interfacial potential associated with the specific adsorption of the ionic dye. [Pg.211]

Despite the large driving force involved in ET from Fc to the excited state of the porphyrin [compare potentials in Figs. 3(a) and 4], photocurrents are only observed at positive Galvani potential differences. Furthermore, photocurrent studies with various electron donors feature very similar potential dependencies [83]. [Pg.218]


See other pages where Driving potential difference is mentioned: [Pg.204]    [Pg.131]    [Pg.142]    [Pg.144]    [Pg.540]    [Pg.136]    [Pg.313]    [Pg.204]    [Pg.131]    [Pg.142]    [Pg.144]    [Pg.540]    [Pg.136]    [Pg.313]    [Pg.248]    [Pg.274]    [Pg.275]    [Pg.228]    [Pg.14]    [Pg.15]    [Pg.866]    [Pg.694]    [Pg.39]    [Pg.118]    [Pg.144]    [Pg.112]    [Pg.236]    [Pg.429]    [Pg.17]    [Pg.231]    [Pg.233]    [Pg.356]    [Pg.646]   
See also in sourсe #XX -- [ Pg.144 ]




SEARCH



Difference potential

Driving forces electrical potential differences

Driving potential

Driving potential difference solution

© 2024 chempedia.info