Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium impurities

Fedak and Gjostein 176) have suggested that the existence of potassium impurities produce this tjrpe of surface structure on a Au(lOO) surface, whereas Auger studies 177) on this surface appear to suggest that the surface reorganization may in fact be a real property of the... [Pg.127]

Though some authors claim the possibifity to synthesize TS-1 in the presence of sodium ions [13-15], it has been demonstrated that even trace amounts of alkali metal ions in the reaction mixture (sodium and/or potassium impurities of commercial TPAOH solutions), prevents or limits to some extent the incorporation of titanium into the framework [16-19]. Adding NaOH to the solution of alkali-free tetrapropylammonium hydroxide results in increasing overall Ti content but decreasing Ti incorporation in the solid recovered. At high sodium concentration, anatase was detected by X-ray diffraction analysis together with TS-1. This indicates that alkafi cations may promote the formation of insoluble... [Pg.190]

The crude acetonitrile contains as impurity chiefly acetic acid, arising from the action of phosphoric acid on the acetamide. Therefore add to the nitrile about half its volume of water, and then add powdered dry potassium carbonate until the well-shaken mixture is saturated. The potassium carbonate neutralises any acetic acid present, and at the same time salts out the otherwise water-soluble nitrile as a separate upper layer. Allow to stand for 20 minutes with further occasional shaking. Now decant the mixed liquids into a separating-funnel, run off the lower carbonate layer as completely as possible, and then pour off the acetonitrile into a 25 ml, distilling-flask into which about 3-4 g. of phosphorus pentoxide have been placed immediately before. Fit a thermometer and water-condenser to the flask and distil the acetonitrile slowly, collecting the fraction of b.p. 79-82°. Yield 9 5 g. (12 ml.). [Pg.122]

This type of extraction depends upon the use of a reagent which reacts chemically with the compound to be extracted, and is generally employed either to remove small amounts of impurities in an organic compound or to separate the components of a mixture. Examples of such reagents include dilute (5 per cent.) aqueous sodium or potassium hydroxide solution, 5 or 10 per cent, sodium carbonate solution, saturated sodium bicarbonate solution (ca. 5 per cent.), dilute hydrochloric or sulphuric acid, and concentrated sulphuric acid. [Pg.151]

Absolute diethyl ether. The chief impurities in commercial ether (sp. gr. 0- 720) are water, ethyl alcohol, and, in samples which have been exposed to the air and light for some time, ethyl peroxide. The presence of peroxides may be detected either by the liberation of iodine (brown colouration or blue colouration with starch solution) when a small sample is shaken with an equal volume of 2 per cent, potassium iodide solution and a few drops of dilute hydrochloric acid, or by carrying out the perchromio acid test of inorganic analysis with potassium dichromate solution acidified with dilute sulphuric acid. The peroxides may be removed by shaking with a concentrated solution of a ferrous salt, say, 6-10 g. of ferrous salt (s 10-20 ml. of the prepared concentrated solution) to 1 litre of ether. The concentrated solution of ferrous salt is prepared either from 60 g. of crystallised ferrous sulphate, 6 ml. of concentrated sulphuric acid and 110 ml. of water or from 100 g. of crystallised ferrous chloride, 42 ml. of concentrated hydiochloric acid and 85 ml. of water. Peroxides may also be removed by shaking with an aqueous solution of sodium sulphite (for the removal with stannous chloride, see Section VI,12). [Pg.163]

The impurity is potassium chloride. The approximate acid content is determined by heating a weighed sample of the acid in a crucible gently at first and finally at a red heat until no trace of black residue remains, and weighing the white residual potassium chloride. [Pg.848]

Recovery of the wopropyl alcohol. It is not usually economical to recover the isopropyl alcohol because of its lo v cost. However, if the alcohol is to be recovered, great care must be exercised particularly if it has been allowed to stand for several days peroxides are readily formed in the impure acetone - isopropyl alcohol mixtures. Test first for peroxides by adding 0-6 ml. of the isopropyl alcohol to 1 ml. of 10 per cent, potassium iodide solution acidified with 0-6 ml. of dilute (1 5) hydrochloric acid and mixed with a few drops of starch solution if a blue (or blue-black) coloration appears in one minute, the test is positive. One convenient method of removing the peroxides is to reflux each one litre of recovered isopropyl alcohol with 10-15 g. of solid stannous chloride for half an hour. Test for peroxides with a portion of the cooled solution if iodine is liberated, add further 5 g. portions of stannous chloride followed by refluxing for half-hour periods until the test is negative. Then add about 200 g. of quicklime, reflux for 4 hours, and distil (Fig. II, 47, 2) discard the first portion of the distillate until the test for acetone is negative (Crotyl Alcohol, Note 1). Peroxides generally redevelop in tliis purified isopropyl alcohol in several days. [Pg.886]

L. silex, silicis, flint) Davy in 1800 thought silica to be a compound and not an element later in 1811, Gay Lussac and Thenard probably prepared impure amorphous silicon by heating potassium with silicon tetrafluoride. [Pg.33]

It is recovered commercially from monazite sand, which contains about 3%, and from bastnasite, which contains about 0.2%. Wohler obtained the impure element in 1828 by reduction of the anhydrous chloride with potassium. The metal is now produced commercially by reduction of the fluoride with calcium metal. It can also be prepared by other techniques. [Pg.73]

Examples of typical packaging labels from reagent grade chemicals. Label (a) provides the actual lot assay for the reagent as determined by the manufacturer. Note that potassium has been flagged with an asterisk ( ) because its assay exceeds the maximum limit established by the American Chemical Society (ACS). Label (b) does not provide assayed values, but indicates that the reagent meets the specifications of the ACS for the listed impurities. An assay for the reagent also is provided. [Pg.107]

A 38.63-mg sample of potassium ozonide, KO3, was heated to 70 °C for 1 h, undergoing a weight loss of 7.10 mg. Write a balanced chemical reaction describing this decomposition reaction. A 29.6-mg sample of impure KO3 experiences a 4.86-mg weight loss when treated under similar condition. What is the %w/w KO3 in the sample ... [Pg.269]

Plasticity, and hence granulation efficiency, varies considerably with the nature and proportion of feed materials. Pure salts, such as potassium chloride and ammonium sulfate, lend Httle or no plasticity and thus are difficult to granulate. Superphosphates provide good plasticity. The plasticity of ammonium phosphates depends chiefly on the impurity content of iron and aluminum. The higher the impurity the greater the plasticity. In some cases, binders such as clay are added to provide plasticity. [Pg.233]

Manufacture. Commercial KF is manufactured from potassium hydroxide and hydrofluoric acid followed by drying ia a spray dryer or flaking from a heated dmm. The KF assay is typically 97—99% impurities are KF 2H20 and either potassium carbonate or potassium bifluoride. The 1992 price of... [Pg.230]

The fused product is cooled, cmshed, and leached with acidified hot water. The resulting hot solution of potassium hexafiuoto2irconate—hafnate is filtered to remove siUca, then cooled to allow crystaUi2ation of the potassium hexafiuoto2irconate—hafnate. Many of the impurity metals remain in solution. [Pg.441]

In France, Compagnie Europnene du Zirconium (CEZUS) now owned jointly by Pechiney, Eramatome, and Cogema, uses a separation (14) based on the extractive distillation of zirconium—hafnium tetrachlorides in a molten potassium chloride—aluminum trichloride solvent at atmospheric pressure at 350°C. Eor feed, the impure zirconium—hafnium tetrachlorides from the zircon chlorination are first purified by sublimation. The purified tetrachlorides are again sublimed to vapor feed the distillation column containing the solvent salt. Hafnium tetrachloride is recovered in an enriched overhead fraction which is accumulated and reprocessed to pure hafnium tetrachloride. [Pg.442]

The typical SEA process uses a manganese catalyst with a potassium promoter (for solubilization) in a batch reactor. A manganese catalyst increases the relative rate of attack on carbonyl intermediates. Low conversions are followed by recovery and recycle of complex intermediate streams. Acid recovery and purification involve extraction with caustic and heat treatment to further decrease small amounts of impurities (particularly carbonyls). The fatty acids are recovered by freeing with sulfuric acid and, hence, sodium sulfate is a by-product. [Pg.344]

The fermentation-derived food-grade product is sold in 50, 80, and 88% concentrations the other grades are available in 50 and 88% concentrations. The food-grade product meets the Vood Chemicals Codex III and the pharmaceutical grade meets the FCC and the United States Pharmacopoeia XK specifications (7). Other lactic acid derivatives such as salts and esters are also available in weU-estabhshed product specifications. Standard analytical methods such as titration and Hquid chromatography can be used to determine lactic acid, and other gravimetric and specific tests are used to detect impurities for the product specifications. A standard titration method neutralizes the acid with sodium hydroxide and then back-titrates the acid. An older standard quantitative method for determination of lactic acid was based on oxidation by potassium permanganate to acetaldehyde, which is absorbed in sodium bisulfite and titrated iodometricaHy. [Pg.515]

The cmde phthaUc anhydride is subjected to a thermal pretreatment or heat soak at atmospheric pressure to complete dehydration of traces of phthahc acid and to convert color bodies to higher boiling compounds that can be removed by distillation. The addition of chemicals during the heat soak promotes condensation reactions and shortens the time required for them. Use of potassium hydroxide and sodium nitrate, carbonate, bicarbonate, sulfate, or borate has been patented (30). Purification is by continuous vacuum distillation, as shown by two columns in Figure 1. The most troublesome impurity is phthahde (l(3)-isobenzofuranone), which is stmcturaHy similar to phthahc anhydride. Reactor and recovery conditions must be carefully chosen to minimize phthahde contamination (31). Phthahde [87-41-2] is also reduced by adding potassium hydroxide during the heat soak (30). [Pg.484]

Analytical and Test Methods. The acid number of terephthahc acid discussed above is a titration of a sample dissolved in pyridine, using a sodium or potassium hydroxide titrant. However, specifications on certain impurities are so strict that this test caimot, as a practical matter, be failed. Its use has been discontinued by some manufacturers. [Pg.491]

The principal impurity in potassium metal is sodium. Potassium s purity can be accurately deterrnined by a melting point test (Fig. 2) or atomic absorption if necessary after quenching with alcohol and water. Traces of nonmetallic impurities such as oxygen, carbon, and hydrogen can be deterrnined by various chemical and physical methods (7,8). [Pg.517]


See other pages where Potassium impurities is mentioned: [Pg.6]    [Pg.191]    [Pg.373]    [Pg.37]    [Pg.6]    [Pg.191]    [Pg.373]    [Pg.37]    [Pg.124]    [Pg.178]    [Pg.178]    [Pg.185]    [Pg.488]    [Pg.625]    [Pg.772]    [Pg.55]    [Pg.194]    [Pg.225]    [Pg.67]    [Pg.51]    [Pg.232]    [Pg.241]    [Pg.208]    [Pg.385]    [Pg.454]    [Pg.480]    [Pg.165]    [Pg.224]    [Pg.343]    [Pg.511]    [Pg.22]    [Pg.15]    [Pg.180]    [Pg.491]   
See also in sourсe #XX -- [ Pg.345 ]




SEARCH



Potassium hydroxide impurities

© 2024 chempedia.info