Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Potassium acetate, acid

The crude acetonitrile contains as impurity chiefly acetic acid, arising from the action of phosphoric acid on the acetamide. Therefore add to the nitrile about half its volume of water, and then add powdered dry potassium carbonate until the well-shaken mixture is saturated. The potassium carbonate neutralises any acetic acid present, and at the same time salts out the otherwise water-soluble nitrile as a separate upper layer. Allow to stand for 20 minutes with further occasional shaking. Now decant the mixed liquids into a separating-funnel, run off the lower carbonate layer as completely as possible, and then pour off the acetonitrile into a 25 ml, distilling-flask into which about 3-4 g. of phosphorus pentoxide have been placed immediately before. Fit a thermometer and water-condenser to the flask and distil the acetonitrile slowly, collecting the fraction of b.p. 79-82°. Yield 9 5 g. (12 ml.). [Pg.122]

Ethyl acetate. Various grades of ethyl acetate are marketed. The anhydrous comjjound, b.p. 76-77°, is of 99 per cent, purity, is inexpensive, and is suitable for most purposes. The 95-98 per cent, grade usually contains some water, ethyl alcohol and acetic acid, and may be ptuified in the following manner. A mixture of 1 litre of the commercial ethyl acetate, 100 ml. of acetic anhydride and 10 drops of concentrated sulphuric acid is refluxed for 4 hours and then fractionated. The distU-late is shaken with 20-30 g. of anhydrous potassium carbonate, filtered and redistilled. The final product has a purity of about 99-7% and boils at 77°/760 mm. [Pg.174]

The functions of the potassium carbonate are (a) to neutralise the acetic acid arising from the action of the phosphoric acid upon the acetamide, and (6) to salt out the otherwise soluble methyl cyanide as an upper layer. [Pg.408]

Saccharic acid. Use the filtrate A) from the above oxidation of lactose or, alternatively, employ the product obtained by evaporating 10 g. of glucose with 100 ml. of nitric acid, sp. gr. 1 15, until a syrupy residue remains and then dissolving in 30 ml. of water. Exactly neutralise at the boiling point with a concentrated solution of potassium carbonate, acidify with acetic acid, and concentrate again to a thick syrup. Upon the addition of 50 per cent, acetic acid, acid potassium saccharate sepa rates out. Filter at the pump and recrystaUise from a small quantity of hot water to remove the attendant oxahc acid. It is necessary to isolate the saccharic acid as the acid potassium salt since the acid is very soluble in water. The purity may be confirmed by conversion into the silver salt (Section 111,103) and determination of the silver content by ignition. [Pg.453]

The formation of ethyl isopropylidene cyanoacetate is an example of the Knoevenagel reaction (see Discussion before Section IV,123). With higher ketones a mixture of ammonium acetate and acetic acid is an effective catalyst the water formed is removed by azeotropic distillation with benzene. The essential step in the reaction with aqueous potassium cyanide is the addition of the cyanide ion to the p-end of the ap-double bond ... [Pg.490]

The sulphides (I) can be readily oxidised in glacial acetic acid solution by potassium permanganate to the corresponding sulphones (II) the latter exhibit a wide range of melting points and are therefore particularly valuable for the characterisation of mercaptans ... [Pg.500]

Preparation of the sulphones. Dissolve the 2 4-dinitrophenyl-sulphide in the minimum volume of warm glacial acetic acid and add 3 per cent, potassium permanganate solution with shaking as fast as decolourisation occurs. Use a 50 per cent, excess of potassium permanganate if the sulphide tends to precipitate, add more acetic acid. Just decolourise the solution with sulphur dioxide (or with sodium bisulphite or alcohol) and add 2-3 volumes of crushed ice. Filter off the sulphone, dry, and recrystaUise from alcohol. [Pg.501]

Dissolve 1 0 g. (or 10 ml.) of the amine and 1 0 g. of 2 4-dinitrochloro-benzene in 5-10 ml. of ethanol, add a slight excess of anhydrous potassium carbonate or of powdered fused sodium acetate, reflux the mixture on a water bath for 20-30 minutes, and then pour into water. Wash the precipitated solid with dilute sodium carbonate solution, followed by dilute hydrochloric acid. Recrystallise from ethanol, dilute alcohol or glacial acetic acid. [Pg.654]

Alternatively, treat a solution of 3 9 g. of the 6is-diazo ketone in 50 ml. of warm dioxan with 15 ml. of 20 per cent, aqueous ammonia and 3 ml. of 10 per cent, aqueous silver nitrate under reflux in a 250 or 500 ml. flask on a water bath. Nitrogen is gently evolved for a few minutes, followed by a violent reaction and the production of a dark brown and opaque mixture. Continue the heating for 30 minutes on the water bath and filter hot the diamide of decane-1 lO dicarboxyhc acid is deposited on cooling. Filter this off and dry the yield is 3 -1 g., m.p. 182-184°, raised to 184-185° after recrystallisation from 25 per cent, aqueous acetic add. Hydrolyse the diamide (1 mol) by refluxing for 2-5 hours with 3N potassium hydroxide (4 mols) acidify and recrystaUise the acid from 20 per cent, acetic acid. The yield of decane-1 10-dicarboxyhc acid, m.p. 127-128°, is almost quantitative. [Pg.905]

Method A. Cool a solution of the nitrate-free dichloride, prepared from or equivalent to 5 0 g. of palladium or platinum, in 50 ml. of water and 5 ml. of concentrated hydrochloric acid in a freezing mixture, and treat it with 50 ml. of formahn (40 per cent, formaldehyde) and 11 g. of the carrier (charcoal or asbestos). Stir the mixture mechanically and add a solution of 50 g. of potassium hydroxide in 50 ml. of water, keeping the temperature below 5°. When the addition is complete, raise the temperature to 60° for 15 minutes. Wash the catalyst thoroughly by decantation with water and finally with dilute acetic acid, collect on a suction filter, and wash with hot water until free from chloride or alkali. Dry at 100° and store in a desiccator. [Pg.948]

In a 1 litre round-bottomed flask, equipped with an air condenser, place a mixture of 44 g. of o-chlorobenzoic acid (Section IV,157) (1), 156 g. (153 ml.) of redistilled aniline, 41 g. of anhydrous potassium carbonate and 1 g. of cupric oxide. Reflux the mixture in an oil bath for 2 hours. Allow to cool. Remove the excess of aniline by steam distillation and add 20 g. of decolourising carbon to the brown residual solution. Boil the mixture for 15 minutes, and filter at the pump. Add the filtrate with stirring to a mixture of 30 ml. of concentrated hydrochloric acid and 60 ml. of water, and allow to cool. Filter off the precipitated acid with suction, and dry to constant weight upon filter paper in the air. The yield of iV-phenylanthranilic acid, m.p. 181-182° (capillary tube placed in preheated bath at 170°), is 50 g. This acid is pure enough for most purposes. It may be recrystaUised as follows dissolve 5 g. of the acid in either 25 ml. of alcohol or in 10 ml. of acetic acid, and add 5 ml. of hot water m.p. 182-183°. [Pg.991]

Ninhydrin (also named 1 2 3-triketoindane or 1 2 3-triketohydrindene hydrate) is prepared most simply from the inexpensive phthahc anhydride (I). The latter is condensed with acetic anhydride In the presence of potassium acetate to give phthalylacetlc acid (II) reaction of the latter with sodium methoxide in methanol yields 1 3-indanedionecarboxyhc acid, which is decomposed upon warming with dilute hydrochloric or sulphuric acid to indane-1 3-dione (or 1 3-diketohydrindene) (HI). Selenium dioxide oxidation of (III) afibrds indane-1 2 3-trione hydrate (ninhydrin) (IV). [Pg.993]

Phthalylacetic acid. Heat a mixture of 30 g. of phthalic anhydride, 40 ml. of acetic anhydride and 5 g. of potassium acetate under reflux in an oil bath at 155-165° for 15 minutes. Pour the reaction mixture into ice-cold water, collect the yellow precipitate by suction filtration, wash it three times with 25 ml. of water and once with 10 ml. of 50 per cent, ethanol. Dry the. product at 100° the yield of crude plithalylaeetie acid is 20 g. Recrystallise from hot methanol yellow needles, m.p. 245-246°, are obtained. [Pg.994]

If the atophan does not crystallise—this is rarely the case unless pyruvic acid which has been standing for some time is employed—pour the reaction mixture into a solution of 2a g. of potassium hydroxide in 1 litre of water, and extract the resulting solution two or three times with ether. Place the ether extracts in the ETHER RESIDUES bottle. Treat the aqueous layer with 70 ml. of glacial acetic acid with vigorous stirring. Allow to stand for several hours and collect the crude atophan by filtration with suction. [Pg.1011]

Dimethylaminomethylindole (gramine). Cool 42 5 ml. of aqueous methylamine solution (5 2N ca. 25 per cent, w/v) contained in an 100 ml. flask in an ice bath, add 30 g. of cold acetic acid, followed by 17 -2 g. of cold, 37 per cent, aqueous formaldehyde solution. Pour the solution on to 23 -4 g. of indole use 10 ml. of water to rinse out the flask. Allow the mixture to warm up to room temperature, with occasional shaking as the indole dissolves. Keep the solution at 30-40° overnight and then pour it, with vigorous stirring, into a solution of 40 g. of potassium hydroxide in 300 ml. of water crystals separate. Cool in an ice bath for 2 hours, collect the crystalline solid by suction flltration, wash with three 50 ml. portions of cold water, and dry to constant weight at 50°. The yield of gramine is 34 g. this is quite suitable for conversion into 3-indoleacetic acid. The pure compound may be obtained by recrystaUisation from acetone-hexane m.p. 133-134°. [Pg.1013]

The amino add analysis of all peptide chains on the resins indicated a ratio of Pro Val 6.6 6.0 (calcd. 6 6). The peptides were then cleaved from the resin with 30% HBr in acetic acid and chromatogra phed on sephadex LH-20 in 0.001 M HCl. 335 mg dodecapeptide was isolated. Hydrolysis followed by quantitative amino acid analysis gave a ratio of Pro Val - 6.0 5.6 (calcd. 6 6). Cycll2ation in DMF with Woodward s reagent K (see scheme below) yielded after purification 138 mg of needles of the desired cyc-lododecapeptide with one equiv of acetic add. The compound yielded a yellow adduct with potassium picrate, and here an analytically more acceptable ratio Pro Val of 1.03 1.00 (calcd. 1 1) was found. The mass spectrum contained a molecular ion peak. No other spectral measurements (lack of ORD, NMR) have been reported. For a thirty-six step synthesis in which each step may cause side-reaaions the characterization of the final product should, of course, be more elaborate. [Pg.236]

Solvolysis of 2 bromo 2 methylbutane in acetic acid containing potassium acetate gave three products Identify them... [Pg.362]

Solution A was prepared by dissolving potassium acetate in methanol Solution B was pre pared by adding potassium methoxide to acetic acid Reaction of methyl iodide either with solu tion A or with solution B gave the same major product Why" What was this product" ... [Pg.362]

Phosphorus trichloride Acetic acid, aluminum, chromyl dichloride, dimethylsulfoxide, hydroxylamine, lead dioxide, nitric acid, nitrous acid, organic matter, potassium, sodium water... [Pg.1211]

Potassium hydride Air, chlorine, acetic acid, acrolein, acrylonitrile, maleic anhydride, nitroparaf-flns, A-nitrosomethylurea, tetrahydrofuran, water... [Pg.1211]

This experiment describes the quantitative analysis of the asthma medication Quadrinal for the active ingredients theophylline, salicylic acid, phenobarbital, ephedrine HGl, and potassium iodide. Separations are carried out using a Gi8 column with a mobile phase of 19% v/v acetonitrile, 80% v/v water, and 1% acetic acid. A small amount of triethylamine (0.03% v/v) is included to ensure the elution of ephedrine HGl. A UV detector set to 254 nm is used to record the chromatogram. [Pg.612]

First prepared by C. F. Gerhardt from ben2oyl chloride and carefully dried potassium acetate (1), acetic anhydride is a symmetrical iatermolecular anhydride of acetic acid the iatramolecular anhydride is ketene [463-51-4]. Benzoic acetic anhydride [2819-08-1] undergoes exchange upon distillation to yield benzoic anhydride [93-97-0] and acetic anhydride. [Pg.75]

Table 2 Hsts examples of compounds with taste and their associated sensory quaUties. Sour taste is primarily produced by the presence of hydrogen ion slightly modified by the types of anions present in the solution, eg, acetic acid is more sour than citric acid at the same pH or molar concentration (43). Saltiness is due to the salts of alkaU metals, the most common of which is sodium chloride. However, salts such as cesium chloride and potassium iodide are bitter potassium bromide has a mixed taste, ie, salty and bitter (44). Thus saltiness, like sourness, is modified by the presence of different anions but is a direct result of a small number of cations. Table 2 Hsts examples of compounds with taste and their associated sensory quaUties. Sour taste is primarily produced by the presence of hydrogen ion slightly modified by the types of anions present in the solution, eg, acetic acid is more sour than citric acid at the same pH or molar concentration (43). Saltiness is due to the salts of alkaU metals, the most common of which is sodium chloride. However, salts such as cesium chloride and potassium iodide are bitter potassium bromide has a mixed taste, ie, salty and bitter (44). Thus saltiness, like sourness, is modified by the presence of different anions but is a direct result of a small number of cations.
Halogen exchange with KF is not successful ia acetic acid (10). Hydrogen bonding of the acid hydrogen with the fluoride ion was postulated to cause acetate substitution for the haUde however, the products of dissolved KF ia acetic acid are potassium acetate and potassium bifluoride (11). Thus KF acts as a base rather than as a fluorinating agent ia acetic acid. [Pg.230]


See other pages where Potassium acetate, acid is mentioned: [Pg.212]    [Pg.212]    [Pg.254]    [Pg.501]    [Pg.73]    [Pg.251]    [Pg.540]    [Pg.569]    [Pg.624]    [Pg.648]    [Pg.668]    [Pg.707]    [Pg.712]    [Pg.772]    [Pg.834]    [Pg.889]    [Pg.1078]    [Pg.180]    [Pg.573]    [Pg.65]    [Pg.67]    [Pg.67]    [Pg.70]    [Pg.90]    [Pg.470]   
See also in sourсe #XX -- [ Pg.2 , Pg.2 , Pg.2 , Pg.3 , Pg.76 ]




SEARCH



Acetic acid potassium

Acetic acid potassium

Acetic acid reaction with potassium

Acetic acid, potassium salt

Potassium Acetate Solution Acid Sulphate

Potassium Acetate Solution Acid Tartrate

Potassium acetate acid formate

Potassium acetate acid nitrate

Potassium acetate acid oxalate

Potassium acetate acid sulphate

Potassium hydroxide reaction with acetic acid

© 2024 chempedia.info