Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Porous solid phase

Gel permeation chromatography, exclusion chromatography. gel filtration chromatography. A technique for separating the components of a mixture according to molecular volume differences. A porous solid phase (a polymer, molecular sieve) is used which can physically entrap small molecules in the pores whilst large molecules pass down the column more rapidly. A solvent pressure up to 1000 psi may be used. [Pg.98]

Many investigators have studied diffusion in systems composed of a stationary porous solid phase and a continuous fluid phase in which the solute diffuses. The effective transport coefficients in porous media have often been estimated using the following expression ... [Pg.566]

A contaminant can partition from the aqueous phase to solid, air, and biota media, and the presence of each of these media can greatly influence the extent of transport of the contaminant. With a porous solid phase with... [Pg.229]

The boundary condition of zero accumulation on the interface between macropores and solid phase is imposed. The effective diffusivity of the porous sample G1 with bimodal pore size distribution is summarized in Fig. 16, where the sample macro-porosity macro is varied on the horizontal axis. This effective diffusivity is compared with a situation where the diffusion transport in nanopores is omitted. The contribution of the transport through the nano-porous solid phase to the total diffusion flux is significant. The calculated effective... [Pg.178]

Cambou and Klibanov have used transesterifications catalyzed by PLE and yeast lipase to resolve a variety of alcohols with great effectiveness. Their novel approach employed a biphaslc system of aqueous enzyme solution absorbed in a porous solid phase placed in a mixture of "matrix ester" (methyl propionate or tributyrin) and racemic alcohol (Scheme I). [Pg.267]

Saber Tehran M, Aberoomand Azar P, Mohammadiazar S. A single step technique for preparation of porous solid phase microextraction fibers by electrochemically co-deposited silica based sol-gel/Cu nanocomposite. J Chromatogr A. 1278 (2013) l-7. [Pg.724]

Kiel et al. [41] proposed a model, which predicts the performance of a full-scale gas-flowing solids-fixed bed absorber, for flue gas desulfurization. An one-dimensional, two-phase axially dispersed model has been applied. The model was derived from separate mass and heat balances for both gas and (porous) solid phases in the case of noncatalytic gas-sohd reaction, which is first order in the gas phase. [Pg.592]

A novel approach to peptide synthesis has been the use of a chloromethylated polystyrene polymer as an insoluble but porous solid phase on which the coupling reactions are carried out. Attachment to the polymer, constitutes protection of the carboxyl group (as a modified benzyl ester), and the peptide is lengthened from its amino-end by successive carbodiimide couplings. The method has been applied to the synthesis of a tetrapeptide, but incomplete reactions lead to the accumulation of by products. Further development of this interesting method is awaited. [Pg.1]

Steady-state reaction and diffusion in a porous solid phase (described by an ODE). [Pg.350]

The porous solid phase in most Uthium batteries contains particles which can be modeled as spheres. The active material of the insertion electrodes used in most hthium-ion batteries consists of mobUe cations, mobUe electrons, and immobUe host matrix. If one neglects the effects of stress and anisotropic diffusion, then transport of lithium ions can be described as above, yielding... [Pg.352]

As also noted in the preceding chapter, it is customary to divide adsorption into two broad classes, namely, physical adsorption and chemisorption. Physical adsorption equilibrium is very rapid in attainment (except when limited by mass transport rates in the gas phase or within a porous adsorbent) and is reversible, the adsorbate being removable without change by lowering the pressure (there may be hysteresis in the case of a porous solid). It is supposed that this type of adsorption occurs as a result of the same type of relatively nonspecific intermolecular forces that are responsible for the condensation of a vapor to a liquid, and in physical adsorption the heat of adsorption should be in the range of heats of condensation. Physical adsorption is usually important only for gases below their critical temperature, that is, for vapors. [Pg.599]

Combined Pore and Solid Diffusion In porous adsorbents and ion-exchange resins, intraparticle transport can occur with pore and solid diffusion in parallel. The dominant transport process is the faster one, and this depends on the relative diffusivities and concentrations in the pore fluid and in the adsorbed phase. Often, equilibrium between the pore fluid and the solid phase can be assumed to exist locally at each point within a particle. In this case, the mass-transfer flux is expressed by ... [Pg.1512]

In many important cases of reactions involving gas, hquid, and solid phases, the solid phase is a porous catalyst. It may be in a fixed bed or it may be suspended in the fluid mixture. In general, the reaction occurs either in the liquid phase or at the liquid/solid interface. In fixed-bed reactors the particles have diameters of about 3 mm (0.12 in) and occupy about 50 percent of the vessel volume. Diameters of suspended particles are hmited to O.I to 0.2 mm (0.004 to 0.008 in) minimum by requirements of filterability and occupy I to 10 percent of the volume in stirred vessels. [Pg.2118]

Prepai ative isolation of nonvolatile and semivolatile organic compounds fractions (hydrophobic weak acids, hydrophobic weak bases, hydrophobic neutrals, humic and fulvic acids) from natural and drinking waters in optimal conditions was systematically investigated by solid-phase extraction method with porous polymer sorbents followed by isolation from general concentrate of antropogenic and/or toxic semivolatile compounds produced in chlorination and ozonation processes. [Pg.413]

In addition to the development of the powerful chiral additive, this study also demonstrated that the often tedious deconvolution process can be accelerated using HPLC separation. As a result, only 15 libraries had to be synthesized instead of 64 libraries that would be required for the full-scale deconvolution. A somewhat similar approach also involving HPLC fractionations has recently been demonstrated by Griffey for the deconvolution of libraries screened for biological activity [76]. Although demonstrated only for CE, the cyclic hexapeptides might also be useful selectors for the preparation of chiral stationary phases for HPLC. However, this would require the development of non-trivial additional chemistry to appropriately link the peptide to a porous solid support. [Pg.66]

Some limitations of optical microscopy were apparent in applying [247—249] the technique to supplement kinetic investigations of the low temperature decomposition of ammonium perchlorate (AP), a particularly extensively studied solid phase rate process [59]. The porous residue is opaque. Scanning electron microscopy showed that decomposition was initiated at active sites scattered across surfaces and reaction resulted in the formation of square holes on m-faces and rhombic holes on c-faces. These sites of nucleation were identified [211] as points of intersection of line dislocations with an external boundary face and the kinetic implications of the observed mode of nucleation and growth have been discussed [211]. [Pg.26]

A heterogeneous catalyst is a catalyst present in a phase different from that of the reactants. The most common heterogeneous catalysts are finely divided or porous solids used in gas-phase or liquid-phase reactions. They are finely divided or porous so that they will provide a large surface area for the elementary reactions that provide the catalytic pathway. One example is the iron catalyst used in the... [Pg.686]

The volume of stationary phase with which the solutes in a mixture can interact (Vs in equation (11)) will depend on the physical nature of the stationary phase or support. If the stationary phase is a porous solid, and the sizes of the pores are commensurate with the molecular diameter of the sample components, then the stationary phase becomes... [Pg.33]

The effective diffusivity depends on the statistical distribution of the pore transport coefficients W j. The derivation shows that the semi-empirical volume-averaging method can only be regarded as an approximation to a more complex dynamic behavior which depends non-locally on the history of the system. Under certain circumstances the long-time (t —> oo) diffusivity will not depend on t (for further details, see [191]). In such a case, the usual Pick diffusion scenario applies. The derivation presented above can, with minor revisions, be applied to the problem of flow in porous media. When considering the heat conduction problem, however, some new aspects have to be taken into accoimt, as heat is transported not only inside the pore space, but also inside the solid phase. [Pg.245]

In topochemical reactions all steps, including that of nucleation of the new phase, occur exclusively at the interface between two solid phases, one being the reactant and the other the product. As the reaction proceeds, this interface gradually advances in the direction of the reactant. In electrochemical systems, topochemical reactions are possible only when the reactant or product is porous enough to enable access of reacting species from the solution to each reaction site. The number of examples electrochemical reactions known to follow a truly topochemical mechanism is very limited. One of these examples are the reactions occurring at the silver (positive) electrode of silver-zinc storage batteries (with alkaline electrolyte) ... [Pg.442]

The electrokinetic processes can actually be observed only when one of the phases is highly disperse (i.e., with electrolyte in the fine capillaries of a porous solid in the cases of electroosmosis and streaming potentials), with finely divided particles in the cases of electrophoresis and sedimentation potentials (we are concerned here with degrees of dispersion where the particles retain the properties of an individual phase, not of particles molecularly dispersed, such as individual molecules or ions). These processes are of great importance in particular for colloidal systems. [Pg.596]


See other pages where Porous solid phase is mentioned: [Pg.102]    [Pg.5]    [Pg.630]    [Pg.332]    [Pg.102]    [Pg.5]    [Pg.630]    [Pg.332]    [Pg.221]    [Pg.232]    [Pg.547]    [Pg.245]    [Pg.1496]    [Pg.2004]    [Pg.348]    [Pg.51]    [Pg.295]    [Pg.71]    [Pg.931]    [Pg.56]    [Pg.198]    [Pg.566]    [Pg.101]    [Pg.454]    [Pg.621]    [Pg.241]    [Pg.220]    [Pg.88]   


SEARCH



Porous solid catalytic phase

Porous solids

Porous solids single-phase fluid flow

Solid Core versus Fully Porous Phase Materials

© 2024 chempedia.info