Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Pore size Subject

Isotherms of Type 111 and Type V, which are the subject of Chapter 5, seem to be characteristic of systems where the adsorbent-adsorbate interaction is unusually weak, and are much less common than those of the other three types. Type III isotherms are indicative of a non-porous solid, and some halting steps have been taken towards their use for the estimation of specific surface but Type V isotherms, which betoken the presence of porosity, offer little if any scope at present for the evaluation of either surface area or pore size distribution. [Pg.37]

Chromatographic use of monolithic silica columns has been attracting considerable attention because they can potentially provide higher overall performance than particle-packed columns based on the variable external porosity and through-pore size/skeleton size ratios. These subjects have been recently reviewed with particular interests in fundamental properties, applications, or chemical modifications (Tanaka et al., 2001 Siouffi, 2003 Cabrera, 2004 Eeltink et al., 2004 Rieux et al., 2005). Commercially available monolithic silica columns at this time include conventional size columns (4.6 mm i.d., 1-10 cm), capillary columns (50-200 pm i.d., 15-30 cm), and preparative scale columns (25 mm i.d., 10 cm). [Pg.153]

Nucleic acids, DNA and RNA, are attractive biopolymers that can be used for biomedical applications [175,176], nanostructure fabrication [177,178], computing [179,180], and materials for electron-conduction [181,182]. Immobilization of DNA and RNA in well-defined nanostructures would be one of the most unique subjects in current nanotechnology. Unfortunately, a silica surface cannot usually adsorb duplex DNA in aqueous solution due to the electrostatic repulsion between the silica surface and polyanionic DNA. However, Fujiwara et al. recently found that duplex DNA in protonated phosphoric acid form can adsorb on mesoporous silicates, even in low-salt aqueous solution [183]. The DNA adsorption behavior depended much on the pore size of the mesoporous silica. Plausible models of DNA accommodation in mesopore silica channels are depicted in Figure 4.20. Inclusion of duplex DNA in mesoporous silicates with larger pores, around 3.8 nm diameter, would be accompanied by the formation of four water monolayers on the silica surface of the mesoporous inner channel (Figure 4.20A), where sufficient quantities of Si—OH groups remained after solvent extraction of the template (not by calcination). [Pg.134]

Adsorption Isotherms. The adsorption isotherms were determined using the serum-replacement adsorption or desorption methods (7). For the adsorption method, the latex samples (50 or 100 cm 2% solids) containing varying amounts of PVA were equilibrated for 36 hours at 25°C, placed in the serum replacement cell equipped with a Nuclepore membrane of the appropriate pore size, and pressurized to separate a small sample of the serum from the latex. For the desorption method, the latex samples (250 cm 2.5% solids) were equilibrated for 36 hours at 25°C and subjected to serum replacement with DDI water at a constant 9-10 cm /hour. The exit stream was monitored using a differential refractometer. The mean residence time of the feed stream was ca. 25 hours. It was assumed that equilibrium between the adsorbed and solute PVA was maintained throughout the serum replacement. For both methods, the PVA concentration was determined using a An-C calibration curve. [Pg.79]

Mercury porosimetry is based on the fact that mercury behaves as a nonwetting liquid toward most substances and will not penetrate the solid unless pressure is applied. To measure the porosity, the sample is sealed in a sample holder that is tapered to a calibrated stem. The sample holder and stem are then filled with mercury and subjected to increasing pressures to force the mercury into the pores of the material. The amount of mercury in the calibrated stem decreases during this step, and the change in volume is recorded. A curve of volume versus pressure represents the volume penetrated into the sample at a given pressure. The intrusion pressure is then related to the pore size using the Washburn equation... [Pg.265]

Materials with controlled pore sizes and functionality, particularly in three dimensions would have many uses (53-59). Numerous totally inorganic microporous and mesoporous materials have been subject of thousands of papers, and applications of the former (e.g., zeolites) have a sizable impact on the global economy at present (myriad uses from production of gasoline to a host of chemicals) (60-66). However, the use... [Pg.264]

Huber Flat-panel membranes with 0.025-mm pore size. They are arranged in a vertical position on a rotating shaft in an aeration tank. They were subjected to spray washing. [Pg.226]

Clearly the macroporous polymers are the only solids that have the physical characteristics useful for gravity flow columns. This conclusion is frequently not considered or discussed. With respect to the polymers listed in Table I, the most useful are those with the highest surface areas however, these are subject to the caveat about pore size discussed next. [Pg.216]

As indicated by XRD patterns, there exist just 2-3 broad peaks in the calcined acid-made materials (Fig. 3A). Moreover, the N2 adsorption/desorption isotherm shown in Fig. 3B, the calcined acid-made mesoporous silica indeed possesses a broad capillary condensation at the partial pressure p/p0 of ca. 0.2-0.4, indicating a broad pore size distribution with a FWHM ca. 1.0 nm calculated from the BJH method. This is attributed to the occurrence of partial collapse of the mesostructure during the high temperature calcination. The hexagonal structure completely collapsed when subjected to further hydrothermal treatment in water at 100 °C for 3 h. Mesoporous silica materials synthesized from the acid route are commonly believed to be less stable than those from the alkaline route [6,7]. [Pg.12]

To improve the meso-structural order and stability of the mesoporous silica ropes, a postsynthesis ammonia hydrothermal treatment (at 100 °C) was invoked. As indicated by the XRD profile in Fig. 3A, 4-5, sharp features are readily observed in ammonia hydrothermal treated samples. Moreover, after the post-synthesis ammonia treatment, the sample also possesses a sharp capillary condensation at p/po 0.35(Fig. 3B) corresponding to a much narrower BJH pore size distribution of ca. 0.12 nm (at FWHM). In other words, the mesostructures are not only more uniform but also more stable when subjected to the post-synthesis treatment. The morphology of the silica ropes remained unchanged during the ammonia hydrothermal process. The mesostructures remain intact under hydrothermal at 100 °C in water even for extended reaction time (> 12 h). [Pg.12]

Powdered, particulate MCM-41 molecular sieves (Si/Al = 37) with varied pore diameters (1.80, 2.18, 2.54 and 3.04 nm) were synthesized following the conventional procedure using sodium silicate, sodium aluminate and C TMAB (n = 12, 14, 16 and 18) as the source materials for Si, A1 and quaternary ammonium surfactants, respectively [13]. Each sample was subjected to calcination in air at 560 °C for 6 h to remove the organic templates. The structure of the synthesized material was confirmed by powder X-ray diffraction (XRD) and by scanning/transmission electron microscopy. Their average pore sizes were deduced from the adsorption curve of the N2 adsorption-desorption isotherm obtained at 77 K by means of the BJH method (Table 1). [Pg.518]

Large-pore titanosilicates developed after TS-1, for example, Ti-beta, Ti-ITQ-7, Ti-MCM-41 and Ti-MCM-48, have been claimed to have advantages for the oxidation of bulky alkenes because of their pore size [15-17, 66, 67]. However, none of them is intrinsically more active than TS-1 in the reactions of small substrates that have no obvious diffusion problem for the medium pores. Therefore, in parallel with developing large pore titanosilicates, the search for more intrinsically active ones than TS-1 is also an important research subject. The catalytic performance of Ti-MWW is compared in the oxidation of 1-hexene with H202 with that of TS-1 and Ti-beta. Consistent with the results reported elsewhere [15-17], TS-1 showed higher conversion than Ti-beta with a similar Ti content. However, Ti-MWW exhibited activity about three times as high as TS-1 based on the specific conversion per Ti site (TON). [Pg.139]

X-ray scattering from coal was the subject of several early studies which led to the postulation that coal contains aromatic layers about 20 to 30 A in diameter, aligned parallel to near-neighbors at distances of about 3.5 A (Hirsch, 1954). Small-angle x-ray scattering, which permits characterization of the open and closed porosity of coal, has shown a wide size distribution and the radius of gyration appears to be insufficient to describe the pore size. Application of the Fourier transform technique indicated that some coals have a mesoporosity with a mean radius of 80 to 100 A (Guet, 1990). [Pg.176]


See other pages where Pore size Subject is mentioned: [Pg.110]    [Pg.141]    [Pg.4]    [Pg.73]    [Pg.327]    [Pg.402]    [Pg.34]    [Pg.441]    [Pg.445]    [Pg.71]    [Pg.265]    [Pg.340]    [Pg.177]    [Pg.149]    [Pg.207]    [Pg.242]    [Pg.377]    [Pg.245]    [Pg.199]    [Pg.146]    [Pg.146]    [Pg.149]    [Pg.168]    [Pg.181]    [Pg.15]    [Pg.18]    [Pg.19]    [Pg.135]    [Pg.90]    [Pg.330]    [Pg.189]    [Pg.55]    [Pg.144]    [Pg.325]    [Pg.141]    [Pg.81]    [Pg.581]    [Pg.595]   
See also in sourсe #XX -- [ Pg.297 ]




SEARCH



Pore size

© 2024 chempedia.info