Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyvinyl alcohol solubility

Nonionic hydrophilic Polyethylene glycol Soluble starch, methyl cellulose, pullulan Dextran Above samples plus hydroxyethyl cellulose, polyvinyl alcohol, polyacrylamide Distilled water 0.01 N NaOH DMSO Buffer or salt solution (e.g., 0.1— 0.5 M NaNO,)... [Pg.114]

Emulsion polymerization is widely used to produce polymers in the form of emulsions, such as paints and floor polishes. It also used to polymerize many water insoluble vinyl monomers, such as styrene and vinyl chloride. In emulsion polymerization, an agent emulsifies the monomers. Emulsifying agents should have a finite solubility. They are either ionic, as in the case of alkylbenzene sulfonates, or nonionic, like polyvinyl alcohol. [Pg.316]

In suspension polymerization, the monomer gets dispersed in a liquid, such as water. Mechanical agitation keeps the monomer dispersed. Initiators should be soluble in the monomer. Stabilizers, such as talc or polyvinyl alcohol, prevent polymer chains from adhering to each other and keep the monomer dispersed in the liquid medium. The final polymer appears in a granular form. [Pg.316]

An alternative to traditional chemicals is the use of VCI materials, such as Boiler Lizard from the Cortec Corporation. This product is a VCI powder contained in an inner, water-soluble polyvinyl alcohol (PVA) bag and outer wrapping. The wrapping is removed, the inner lining slit open, and the bag left in a suitable place within... [Pg.610]

The heat exchanger fins from aluminum or its alloy are coated with aqueous solution containing a water-soluble cellulose resin or polyvinyl alcohol and a surfactant to form a hydrophilic film. Phosphoric acid ester was used as anionic surfactant (0.05-4.5%) in aqueous solution to form a hydrophilic film showing contact angle with water of 5-32° [288]. [Pg.613]

Effects due to the addition of water-soluble polymers (polyoxyethylene glycol, polyacrylamide, and polyvinyl alcohol) on water/AOT/decane w/o microemulsions have been reported [190],... [Pg.490]

Polyvinyl alcohol (cold-water soluble) (3) Polysaccharides (Kelzan) (3)... [Pg.452]

By using this technique only water insoluble monomers can be polymerised. In this process, the monomer is suspended as discrete droplets (0.1 to 1.0 mm diameter) in dilute aqueous solution containing protective colloids like polyvinyl alcohol and surfactants, etc. The droplets have large surface area and can readily transfer heat to water. Suspension is brought about by agitating the suspension. Protective colloids prevent coalescence of the droplets. A monomer soluble initiator is used. The product is obtained by filtration or spray drying. This process cannot be carried out yet in a continuous process hence batch processing has to be used. [Pg.15]

Unmodified and anionically modified starches, soluble cellulose derivatives such as carboxymethylcellulose, polyvinyl alcohol, latex and other polymers are also used in some specialised applications. Starch, however, because of its cost, is by far the most common dry strength additive, about twenty times more being used than, for example, polyacrylamide. [Pg.118]

Surface sizes are usually solutions of water-soluble polymers. The most important of which, because of its commercial cheapness, is starch. Other more costly but more specialised film-forming polymers such as soluble cellulose derivatives (particularly carboxy-methyl cellulose), polyvinyl alcohol and alginates are also used. [Pg.144]

Polyvinyl alcohol (PVA), which is a water soluble polyhidroxy polymer, is one of the widely used synthetic polymers for a variety of medical applications [197] because of easy preparation, excellent chemical resistance, and physical properties. [198] But it has poor stability in water because of its highly hydrophilic character. Therefore, to overcome this problem PVA should be insolubilized by copolymerization [43], grafting [199], crosslinking [200], and blending [201], These processes may lead a decrease in the hydrophilic character of PVA. Because of this reason these processes should be carried out in the presence of hydrophilic polymers. Polyfyinyl pyrrolidone), PVP, is one of the hydrophilic, biocompatible polymer and it is used in many biomedical applications [202] and separation processes to increase the hydrophilic character of the blended polymeric materials [203,204], An important factor in the development of new materials based on polymeric blends is the miscibility between the polymers in the mixture, because the degree of miscibility is directly related to the final properties of polymeric blends [205],... [Pg.156]

In the homogenous mixture of Starch and Polyvinyl alcohol (PVA), 30 % of plasticizer was mixed to make Pure blend. Then 10 % cellulose was mixed into above mixture followed by removal of extra water gave Cellulose-Reinforced starch-PVA blends. The different proportions of Fly ash were mixed into mixture of Cellulose-Reinforced starch-PVA blends to get various fly ash inserted Cellulose-Reinforced starch-PVA blends. Solubility, swelling behaviour and water absorption studies of Fly ash blends were measured at different time intervals at relative humidity of 50-55%. The insertion of Cellulose into starch-PVA blend decreases the solubility of blends due to the hydrophobicity of cellulose, but the solubility further increases by insertion of Fly ash into starch-PVA matrix that indicating the mechanical stability enhancement of blends. The water absorption behaviour of fly ash blends increases rapidly upto 150 min and then no change. The optimum concentration of Fly ash into Cellulose-Reinforced starch-PVA blend was 4%. [Pg.117]

An interesting feature of current commercial products is that the polymer vehicles available for formulation have been limited to nonionic and anionic materials. The delivery vehicles available included off-the-shelf polymers such as carboxymethylcellulose, soluble starch, hydroxyethyl-cellulose, polyvinyl alcohol, poly(acrylic acid), and polyvinylpyrrolidone, or mixtures thereof. The choice of available polymeric delivery system primarily depends on component compatibility, aesthetics, and efficacy. However, by reliance upon available (off-the-shelf) systems, limitations on bioadhesion, drug bioavailability, contraceptive efficacy, and end-use characteristics has been limited. [Pg.217]

Because of the presence of ether groups and terminal hydroxyl groups, polyethylene oxide (PEO) is also soluble in water. Likewise, polyvinyl alcohol (PVA), which contains a hydroxyl group on most of the alternate carbon atoms in the linear chain, is soluble in water. [Pg.207]

In contrast to water-soluble polymers, such as polyacrylamide, which has a relatively high critical surface tension (35 dyne/cm), water-repellent polymers, such as the silicones and ptfe, have relatively low critical surface tensions (24 and 19 dyne/cm, respectively). The presence of hydroxyl groups in polymers, such as polyvinyl alcohol and polyacrylic acid which tend to... [Pg.209]

A number of polymers exhibit this hydration property. Natural products such as cellulose and starch are or can be made water soluble. Synthetics such as polyvinyl alcohol and polyacrylic acid are also soluble in water. This discussion will be limited to synthetic materials such as polyacrylic acid and its salts, polyvinyl alcohol, polyacrylamide, and polyurethane... [Pg.177]

We subject envelope and stamp adhesives to stringent safety requirements. Since we re likely to swallow traces of the stuff, we have to regulate it as a food. Gum arable from the acacia tree, dextrin from corn starch, and the water soluble resin polyvinyl alcohol are the adhesives we use most often. We also... [Pg.222]

Finally, the water-soluble polyesters of phosphoric or boric acid with glycols or glycerol should be mentioned. They can be used in combination with water-soluble polymers like polyvinyl alcohol, polyacrylamide, and polyvinyl pyrrolidone. [Pg.101]

The addition of water-soluble polymers such as polyethylene oxide (PEO) or polyvinyl alcohol (PVA) into the synthetic mixture of the C TMAX-HN03-TE0S-H20 system (n = 16 or 18 X = Br or Cl) under shear flow is found to promote uniformity and elongation of rope-like mesoporous silica. The millimeter-scaled mesoporous silica ropes are found to possess a three-level hierarchical structure. The addition of water-soluble polymer does not affect the physical properties of the silica ropes. Moreover, further hydrothermal treatment of the acid-made material under basic ammonia conditions effectively promotes reconstruction of the silica nanochannels while maintaining the rope-like morphology. As a result, a notable enhancement in both thermal and hydrothermal stability is found. [Pg.7]

Proof of grafting was presented through comparison of the solubilities of their saponified vinyl acetate and cellulose grafts and of the physical mixtures of the corresponding homopolymers. While from a cupriethyl-enediamin solution of the physical mixture pure cellulose is precipitated on acidification, the precipitate from the graft solution always contains constant amounts of polyvinyl alcohol, as proven by infrared spectroscopy. [Pg.119]

Lyophilic sols are true solutions of large molecules in a solvent, Solutions of starch, proteins, or polyvinyl alcohol in water are representative of numerous examples. Properties of these solutions at equilibrium (for example, density and viscosity) are regular functions of concentration and temperature, independent of the method of preparation. The solvent-macromolecule compound system may consist uf more than one phase, each phase in general containing both components. Thus, if a solid polymer is added to a solvent in an amount exceeding the solubility limit, the system will consist of a liquid phase (solvent with dissolved polymer) and a solid phase (polymer swollen with solvent, i.e., a polymer with dissolved solvent). [Pg.417]


See other pages where Polyvinyl alcohol solubility is mentioned: [Pg.490]    [Pg.490]    [Pg.443]    [Pg.5]    [Pg.222]    [Pg.165]    [Pg.166]    [Pg.173]    [Pg.163]    [Pg.606]    [Pg.301]    [Pg.346]    [Pg.83]    [Pg.531]    [Pg.161]    [Pg.141]    [Pg.147]    [Pg.255]    [Pg.138]    [Pg.302]    [Pg.180]    [Pg.200]    [Pg.2]    [Pg.172]    [Pg.254]    [Pg.356]    [Pg.127]    [Pg.119]    [Pg.1296]   
See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Polyvinylic alcohol

© 2024 chempedia.info