Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyurethanes thermoplastic polyurethane

Crystalline polyesters are highly important as adhesive raw materials. They are normally crystalline waxes and are highly symmetrical in nature, which can aid the crystallization process [26]. Poly(hexamethylene adipate) and poly(caprolactone), shown in Table 2, are only two of the many crystallizable backbones. Poly(ethylene adipate) and poly(letramethylene adipate) are also commonly used in urethane adhesives. The crystalline polyesters are used in curing hot melts, waterborne polyurethanes, thermoplastic polyurethanes, and solvent-borne urethane adhesives. The adipates are available mostly as diols. The poly(caprolactones) are available as diols and triols. [Pg.770]

Polyurethanes. Thermoplastic polyurethanes (TPUs) contain urethane groups, —O—CO—NH— in their structure obtained from the reaction of a diisocyanate (OCN—R—CNO) with a polyol. These polyurethanes are block copol3miers in which hard blocks formed by reaction of a diisocyanate with a short-chain diol alternate with soft blocks formed by reaction of a diisocyanate with a long-chain diol. [Pg.132]

Polyurethanes are produced by the chemical action of di-isocyanate and polyol. The properties can be varied by the type of isocyanate used and the proportion of the two monomers. There are four main groups of classification for the thermoplastic groups of polyurethane, i.e. rigid foam, flexible foam, non-cellular and cellular polymers. Two main isocyanates used are toluene di-isocyanate (TDI) and diphenylmethane diisocyanate (MDI). Polyurethanes have limited application in the pharmaceutical or medical industries. Polyurethane is used as an adhesive for laminations (thermosetting material). Like thermosetting polyurethane, thermoplastic polyurethanes can be found as esters and ethers. [Pg.197]

Polyurethane sponge. See Polyurethane, thermoplastic Polyurethane foam... [Pg.3592]

Aliphatic isocyanates have a small but growing market application in thermoplastic polyurethanes (TPU). Medical appflcafions include wound dressings, catheters, implant devices, and blood bags. A security glass system using light-stable TPU as an inner layer is under evaluation for shatterproof automotive windshield appflcafions. [Pg.459]

Polyuretha.ne, A type of spunbonded stmcture has been commercialized in Japan based on thermoplastic polyurethanes (15). This represents the first commercial production of such fabrics, although spunbonded urethane fabrics have been previously discussed (16). The elastomeric properties claimed are unique for spunbonded products and appear to be weU suited for use in apparel and other appHcations requiring stretch and recovery. Polyurethanes are also candidates for processing by the meltblown process. [Pg.164]

The late 1950s saw the emergence of cast elastomers, which led to the development of reaction injection mol ding (RIM) at Bayer AG in Leverkusen, Germany, in 1964 (see Plastics processing). Also, thermoplastic polyurethane elastomers (TPUs) and Spandex fibers (see Fibers, elastomeric) were introduced during this time. In addition, urethane-based synthetic leather (see Leather-LIKEmaterials) was introduced by Du Pont under the trade name Corfam in 1963. [Pg.341]

The Hquid monomers are suitable for bulk polymerization processes. The reaction can be conducted in a mold (casting, reaction injection mol ding), continuously on a conveyor (block and panel foam production), or in an extmder (thermoplastic polyurethane elastomers and engineering thermoplastics). Also, spraying of the monomers onto the surface of suitable substrates provides insulation barriers or cross-linked coatings. [Pg.342]

The pseudocross-links, generated by the hard-segment interactions, are reversed by heating or dissolution. Without the domain crystallinity, thermoplastic polyurethanes would lack elastic character and be more gum-like in nature. In view of the outlined morphology, it is not surprising that many products develop their ultimate properties only on curing at elevated temperature, which allows the soft- and hard-phase segments to separate. [Pg.344]

In addition, polyester polyols are made by the reaction of caprolactone with diols. Poly(caprolactone diols) are used in the manufacture of thermoplastic polyurethane elastomers with improved hydrolytic stabiHty (22). The hydrolytic stabiHty of the poly(caprolactone diol)-derived TPUs is comparable to TPUs based on the more expensive long-chain diol adipates (23). Polyether/polyester polyol hybrids are synthesized from low molecular weight polyester diols, which are extended with propylene oxide. [Pg.347]

Polyester and polyether diols are used with MDI in the manufacture of thermoplastic polyurethane elastomers (TPU). The polyester diols are obtained from adipic acid and diols, such as ethylene glycol, 1,4-butanediol, or 1,6-hexanediol. The preferred molecular weights are 1,000 to 2,000, and low acid numbers are essential to ensure optimal hydrolytic stabihty. Also, caprolactone-derived diols and polycarbonate diols are used. Polyether diols are... [Pg.350]

In thermoplastic polyurethanes, polyesters, and polyamides, the crystalline end segments, together with the polar center segments, impart good oil resistance and high upper service temperatures. The hard component in most hard polymer/elastomer combinations is crystalline and imparts resistance to solvents and oils, as well as providing the products with relatively high upper service temperatures. [Pg.14]

Thermoplastic polyurethane elastomers are produced from prepolymers by polycondensation (12,13). A relatively high molecular-weight polyester or polyether with terminal hydroxy groups (a polyglycol) first reacts with an excess of a diisocyanate. [Pg.15]

Global consumption of thermoplastic mbbers of all types is estimated at about 600,000 t/yr (51). Of this, 42% was estimated to be consumed in the United States, 39% in Western Europe, and 19% in Japan. At present, the woddwide market is estimated to be divided as follows styrenic block copolymers, 48% hard polymer/elastomer combinations, 26% thermoplastic polyurethanes, 12% thermoplastic polyesters, 4% and others, 9%. The three largest end uses were transportation, 23% footwear, 18% and adhesives, coatings, etc, 16%. The ranges of the hardness values, prices, and specific gravities of commercially available materials are given in Table 4. [Pg.15]

Multiblock systems. A somewhat similar approach is involved in the production of thermoplastic polyurethane elastomers. In this case the chain contains soft segments that are largely aliphatic polyether in nature and also hard segments that are primarily polyurea (see Chapter 27). [Pg.55]

It is generally more convenient to use the thermoplastic polyurethane rubbers discussed in Section 27.4.4 for those applications where a cast process is not appropriate. [Pg.789]

Several materials designated as thermoplastic polyurethanes have been introduced onto the market but many of them are slightly cross-linked and this may be increased permanently by a post-curing operation after shaping. One product may, however, be regarded as truly thermoplastic (Estane by Goodrich). [Pg.790]

One partieular form of thermoplastic polyurethane elastomers is the elastic fibre known as spandex fibre. Like the usual thermoplastic rubbers these materials consist of hard and soft segments but to qualify for the term spandex by the US Federal Trade Commission the polymer used should contain at least 85% of segmented polyurethane. The first commercial material of this type was introduced by Du Pont in 1958 (Lycra). Several other similar materials have since been introduced including Dorlastan (Bayer), Spanzelle (Courtaulds) and Vyrene (US Rubber). [Pg.790]

Polyester-based thermoplastic polyurethane elastomers (Section 27.4). [Pg.875]

Thermoplastic polyurethane elastomers have now been available for many years (and were described in the first edition of this book). The adipate polyester-based materials have outstanding abrasion and tear resistance as well as very good resistance to oils and oxidative degradation. The polyether-based materials are more noted for their resistance to hydrolysis and fungal attack. Rather specialised polymers based on polycaprolactone (Section 25.11) may be considered as premium grade materials with good all round properties. [Pg.879]

Whilst approximately twice the raw material cost of TPO- and S-B-S-type polymers, thermoplastic polyurethane elastomers find applications where abrasion resistance and toughness are particular requirements. Uses include gears, timing and drive belts, footwear (including ski boots) and tyre chains. Polyether-based materials have also achieved a number of significant medical applications. There is also some minor use as hot melt adhesives, particularly for the footwear industry. [Pg.879]

If polypropylene is too hard for the purpose envisaged, then the user should consider, progressively, polyethylene, ethylene-vinyl acetate and plasticised PVC. If more rubberiness is required, then a vulcanising rubber such as natural rubber or SBR or a thermoplastic polyolefin elastomer may be considered. If the material requires to be rubbery and oil and/or heat resistant, vulcanising rubbers such as the polychloroprenes, nitrile rubbers, acrylic rubbers or hydrin rubbers or a thermoplastic elastomer such as a thermoplastic polyester elastomer, thermoplastic polyurethane elastomer or thermoplastic polyamide elastomer may be considered. Where it is important that the elastomer remain rubbery at very low temperatures, then NR, SBR, BR or TPO rubbers may be considered where oil resistance is not a consideration. If, however, oil resistance is important, a polypropylene oxide or hydrin rubber may be preferred. Where a wide temperature service range is paramount, a silicone rubber may be indicated. The selection of rubbery materials has been dealt with by the author elsewhere. ... [Pg.896]


See other pages where Polyurethanes thermoplastic polyurethane is mentioned: [Pg.2252]    [Pg.2252]    [Pg.984]    [Pg.984]    [Pg.984]    [Pg.984]    [Pg.1005]    [Pg.1005]    [Pg.459]    [Pg.515]    [Pg.361]    [Pg.368]    [Pg.341]    [Pg.343]    [Pg.343]    [Pg.350]    [Pg.354]    [Pg.189]    [Pg.12]    [Pg.54]    [Pg.297]    [Pg.527]    [Pg.784]    [Pg.789]    [Pg.879]    [Pg.924]   


SEARCH



Polyurethanes thermoplastic

© 2024 chempedia.info