Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene vinyl acetate

Other chemicals present in tlie fibres operation or in other operations on sites of the companies in the epidemiological study by Blair et al. (1998) include adiponitrile, hexa-methylenediamine, polyester, polystyrene, vinyl acetate, /, /-diincthylacetamidc, titanium dioxide, propionitrile, methyl methacrylate, zinc chloride, dyes and vinyl bromide (McCammon Zey, 1990 Zey McCammon, 1989 Zey Bloom, 1990). [Pg.51]

Beginning in the late forties, copolymers were fractionated by adsorption chromatography poly (butadiene-co-styrene)32 34), poly(butadiene-co-acrylonitrile)32), polystyrene- -vinyl acetate)35), poly(styrene-h-ethylene oxide)36) and poly(styrene-co-acrylonitrile) 37). HPLC adsorption chromatography was first applied to copolymer analysis by Teramachi et al. in 1979 38>. [Pg.174]

Combination and disproportionation are competitive processes and do not occur to the same extent for all polymers. For example, at 60°C termination is virtually 100% by combination for polyacrylonitrile and 100% by disproportionation for poly (vinyl acetate). For polystyrene and poly (methyl methacrylate), both reactions contribute to termination, although each in different proportions. Each of the rate constants for termination individually follows the Arrhenius equation, so the relative amounts of termination by the two modes is given by... [Pg.360]

Physical Stabilization Process. CeUular polystyrene, ceUulose acetate, polyolefins, and poly(vinyl chloride) can be manufactured by this... [Pg.406]

Other Polymers. Besides polycarbonates, poly(methyl methacrylate)s, cycfic polyolefins, and uv-curable cross-linked polymers, a host of other polymers have been examined for their suitabiUty as substrate materials for optical data storage, preferably compact disks, in the last years. These polymers have not gained commercial importance polystyrene (PS), poly(vinyl chloride) (PVC), cellulose acetobutyrate (CAB), bis(diallylpolycarbonate) (BDPC), poly(ethylene terephthalate) (PET), styrene—acrylonitrile copolymers (SAN), poly(vinyl acetate) (PVAC), and for substrates with high resistance to heat softening, polysulfones (PSU) and polyimides (PI). [Pg.162]

The alcohols, proprietary denatured ethyl alcohol and isopropyl alcohol, are commonly used for E-type inks. Many E-type inks benefit from the addition of small amounts of ethyl acetate, MEK, or normal propyl acetate to the solvent blends. Aromatic hydrocarbon solvents are used for M-type inks. Polystyrene resins are used to reduce the cost of top lacquers. T-type inks are also reduced with aromatic hydrocarbons. Acryflc resins are used to achieve specific properties for V-type inks. Vehicles containing vinyl chloride and vinyl acetate copolymer resins make up the vinyl ink category. Ketones are commonly used solvents for these inks. [Pg.252]

Carbon Cha.in Backbone Polymers. These polymers may be represented by (4) and considered derivatives of polyethylene, where n is the degree of polymeriza tion and R is (an alkyl group or) a functional group hydrogen (polyethylene), methyl (polypropylene), carboxyl (poly(acryhc acid)), chlorine (poly(vinyl chloride)), phenyl (polystyrene) hydroxyl (poly(vinyl alcohol)), ester (poly(vinyl acetate)), nitrile (polyacrylonitrile), vinyl (polybutadiene), etc. The functional groups and the molecular weight of the polymers, control thek properties which vary in hydrophobicity, solubiUty characteristics, glass-transition temperature, and crystallinity. [Pg.478]

New teipolymers of vinyl acetate with ethylene and carbon monoxide have been prepared and their uses as additives to improve the curing and flexibihty of coating resins, eg, nitrocellulose, asphalt, phenoHcs, and polystyrene, have been described (130—132). Vinyl acetate and vinyUdene cyanide form highly alternating copolymers. [Pg.467]

The Q-e Scheme. The magnitude of and T2 can frequentiy be correlated with stmctural effects, such as polar and resonance factors. For example, in the free-radical polymerization of vinyl acetate with styrene, both styrene and vinyl acetate radicals preferentially add styrene because of the formation of the resonance stabilized polystyrene radical. [Pg.178]

In the case of EVOH being used as an interlayer with polyethylene or polystyrene, it is necessary to use additional adhesive layers such as an ethylene-vinyl acetate-maleic anhydride terpolymer (e.g. Orevac— Atochem). [Pg.395]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

II. B polyethylene glycol, ethylene oxide, polystyrene, diisocyanates (urethanes), polyvinylchloride, chloroprene, THF, diglycolide, dilac-tide, <5-valerolactone, substituted e-caprolactones, 4-vinyl anisole, styrene, methyl methacrylate, and vinyl acetate. In addition to these species, many copolymers have been prepared from oligomers of PCL. In particular, a variety of polyester-urethanes have been synthesized from hydroxy-terminated PCL, some of which have achieved commercial status (9). Graft copolymers with acrylic acid, acrylonitrile, and styrene have been prepared using PCL as the backbone polymer (60). [Pg.84]

Hydroformylation of vinyl acetate to give mainly the branched product in >90% ee has been achieved using a rhodium catalyst containing binaphthol and phosphine ligands anchored to polystyrene. [Pg.119]

For the remaining three systems, styrene-vinyl acetate, vinyl acetate-vinyl chloride, and methyl acrylate-vinyl chloride, one reactivity ratio is greater than unity and the other is less than unity. They are therefore nonazeotropic. Furthermore, since both ri and 1/7 2 are either greater than or less than unity, both radicals prefer the same monomer. In other words, the same monomer—styrene, vinyl chloride, and methyl acrylate in the three systems, respectively—is more reactive than the other with respect to either radical. This preference is extreme in the styrene-vinyl acetate system where styrene is about fifty times as reactive as vinyl acetate toward the styrene radical the vinyl acetate radical prefers to add the styrene monomer by a factor of about one hundred as compared with addition of vinyl acetate. Hence polymerization of a mixture of similar amounts of styrene and vinyl acetate yields an initial product which is almost pure polystyrene. Only after most of the styrene has polymerized is a copolymer formed... [Pg.187]

Whatever the approach, the result is a difficult-to-analyse system. Such options suit polymer producers better than additive suppliers. Aromatic polymers (PPO) have been mentioned as char-forming FRs. Polymeric UV absorbers, blended in proper proportions with commercial plastics, have potential use as stabilisers for fibres, films and coatings. Several monomeric stabilisers containing a vinyl group were homopolymerised and used as stabilisers for PE, PVC, acrylates, polystyrene, cellulose acetate and several vinyl polymers [55]. [Pg.721]

We can divide commodity plastics into two classes excellent and moderate insulators. Polymers that have negligible polar character, typically those containing only carbon-carbon and carbon-hydrogen bonds, fall into the first class. This group includes polyethylene, polypropylene, and polystyrene. Polymers made from polar monomers are typically modest insulators, due to the interaction of their dipoles with electrical fields. We can further divide moderate insulators into those that have dipoles that involve backbone atoms, such as polyvinyl chloride and polyamides, and those with polar bonds remote from the backbone, such as poly(methyl methacrylate) and poly(vinyl acetate). Dipoles involving backbone atoms are less susceptible to alignment with an electrical field than those remote from the backbone. [Pg.181]

Vinyl polymers [polystyrene, PVC, polyethylene, polypropylene, poly(vinyl acetate), poly(vinyl alcohol), polyacrylonitrile] -1920 Packaging, tubing, household goods, records, carpets, toys, water based paint, adhesives, varnishes Phthalate esters, poly(vinyl alcohol) ... [Pg.27]

Much work on the preparation of nonaqueous polymer dispersions has involved the radical polymerization of acrylic monomers in the presence of copolymers having the A block the same as the acrylic polymer in the particle core 2). The preparation of polymer dispersions other than polystyrene in the presence of a PS-PDMS diblock copolymer is of interest because effective anchoring of the copolymer may be influenced by the degree of compatibility between the PS anchor block and the polymer molecules in the particle core. The present paper describes the interpretation of experimental studies performed with the aim of determining the mode of anchoring of PS blocks to polystyrene, poly(methyl methacrylate), and poly(vinyl acetate) (PVA) particles. [Pg.268]

PVA Particles. Dispersions were prepared in order to examine stabilization for a core polymer having a glass transition temperature below the dispersion polymerization temperature. PVA particles prepared with a block copolymer having M PS) x 10000 showed a tendency to flocculate at ambient temperature during redispersion cycles to remove excess block copolymer, particularly if the dispersion polymerization had not proceeded to 100 conversion of monomer. It is well documented that on mixing solutions of polystyrene and poly(vinyl acetate) homopolymers phase separation tends to occur (10,11), and solubility studies (12) of PS in n-heptane suggest that PS blocks with Mn(PS) 10000 will be close to dissolution when dispersion polymerizations are performed at 3 +3 K. Consequently, we may postulate that for soft polymer particles the block copolymer is rejected from the particle because of an incompatibility effect and is adsorbed at the particle surface. If the block copolymer desorbs from the particle surface, then particle agglomeration will occur unless rapid adsorption of other copolymer molecules occurs from a reservoir of excess block copolymer. [Pg.277]

Conversely, vesicants have also been thickened with various substances to enhance deployment, increase their persistency, and increase the risk of percutaneous exposure. Thickeners include polyalkyl methacrylates (methyl, ethyl, butyl, isobutyl), poly(vinyl acetate), polystyrene, plexiglas, alloprene, polychlorinated isoprene, nitrocellulose, as well as bleached montan and lignite waxes. Military thickener K125 is a mixture of methyl, ethyl, and butyl polymethacrylates. When thickened, agents become sticky with a consistency similar to honey. Typically, not enough thickener is added to affect either the color or odor of the agent. [Pg.146]


See other pages where Polystyrene vinyl acetate is mentioned: [Pg.170]    [Pg.418]    [Pg.78]    [Pg.204]    [Pg.170]    [Pg.418]    [Pg.78]    [Pg.204]    [Pg.1011]    [Pg.370]    [Pg.363]    [Pg.535]    [Pg.260]    [Pg.395]    [Pg.49]    [Pg.39]    [Pg.139]    [Pg.179]    [Pg.181]    [Pg.244]    [Pg.719]    [Pg.197]    [Pg.402]    [Pg.483]    [Pg.341]    [Pg.261]    [Pg.32]    [Pg.34]    [Pg.260]    [Pg.558]    [Pg.17]    [Pg.298]    [Pg.299]    [Pg.4]    [Pg.319]   
See also in sourсe #XX -- [ Pg.828 ]




SEARCH



Block copolymers vinyl acetate-polystyrene

Vinyl polystyrene

© 2024 chempedia.info