Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polystyrene-poly phenylene

As was already stated (see Figure 6), the temperature dependence of the shift factor aT is a function of the elastomer phase content. The strong effect of the rubber content on the temperature dependence of the shift factor aT could be explained by an increase in free volume of the SAN resin induced by the elastomer phase, as was suggested by Prest and Porter (13) for polystyrene-poly (phenylene oxide) blends. In order to verify this hypothesis, log aT experimental data for SAN and relative blends were used to calculate the WLF parameters and, in turn, the free volumes (f0) at the reference temperature (T0) and the thermal expansion coefficients (a) by the equation ... [Pg.195]

Physical or chemical vapor-phase mechanisms may be reasonably hypothesized in cases where a phosphoms flame retardant is found to be effective in a noncharring polymer, and especially where the flame retardant or phosphoms-containing breakdown products are capable of being vaporized at the temperature of the pyrolyzing surface. In the engineering of thermoplastic Noryl (General Electric), which consists of a blend of a charrable poly(phenylene oxide) and a poorly charrable polystyrene, experimental evidence indicates that effective flame retardants such as triphenyl phosphate act in the vapor phase to suppress the flammabiUty of the polystyrene pyrolysis products (36). [Pg.475]

AppHcation of an adhesion-promoting paint before metal spraying improves the coating. Color-coded paints, which indicate compatibiHty with specific plastics, can be appHed at 20 times the rate of grit blasting, typically at 0.025-mm dry film thickness. The main test and control method is cross-hatch adhesion. Among the most common plastics coated with such paints are polycarbonate, poly(phenylene ether), polystyrene, ABS, poly(vinyl chloride), polyethylene, polyester, and polyetherimide. [Pg.134]

Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ... Fig. 2. Glass-transition temperature, T, for two commercially available, miscible blend systems (a) poly(phenylene oxide) (PPO) and polystyrene (PS) (42) ...
The oxidative coupling of 2,6-dimethylphenol to yield poly(phenylene oxide) represents 90—95% of the consumption of 2,6-dimethylphenol (68). The oxidation with air is catalyzed by a copper—amine complex. The poly(phenylene oxide) derived from 2,6-dimethylphenol is blended with other polymers, primarily high impact polystyrene, and the resulting alloy is widely used in housings for business machines, electronic equipment and in the manufacture of automobiles (see Polyethers, aromatic). A minor use of 2,6-dimethylphenol involves its oxidative coupling to... [Pg.69]

Poly(phenylene ether). The only commercially available thermoplastic poly(phenylene oxide) PPO is the polyether poly(2,6-dimethylphenol-l,4-phenylene ether) [24938-67-8]. PPO is prepared by the oxidative coupling of 2,6-dimethylphenol with a copper amine catalyst (25). Usually PPO is blended with other polymers such as polystyrene (see PoLYETPiERS, Aromatic). However, thermoplastic composites containing randomly oriented glass fibers are available. [Pg.38]

Alloys and blends are of great commercial significance. The archetype of "alloys" is the poly(phenylene oxide)—polystyrene resin discussed eadier. Important examples of blends based on immiscible resins are afforded by the polycarbonate—poly(butylene terephthalate) resins and polycarbonate—ABS blends. [Pg.277]

Engineering resins can be combined with either other engineering resins or commodity resins. Some commercially successhil blends of engineering resins with other engineering resins include poly(butylene terephthalate)—poly(ethylene terephthalate), polycarbonate—poly(butylene terephthalate), polycarbonate—poly(ethylene terephthalate), polysulfone—poly (ethylene terephthalate), and poly(phenylene oxide)—nylon. Commercial blends of engineering resins with other resins include modified poly(butylene terephthalate), polycarbonate—ABS, polycarbonate—styrene maleic anhydride, poly(phenylene oxide)—polystyrene, and nylon—polyethylene. [Pg.277]

Poly(ethylene terephtlhalate) Phenol-formaldehyde Polyimide Polyisobutylene Poly(methyl methacrylate), acrylic Poly-4-methylpentene-1 Polyoxymethylene polyformaldehyde, acetal Polypropylene Polyphenylene ether Polyphenylene oxide Poly(phenylene sulphide) Poly(phenylene sulphone) Polystyrene Polysulfone Polytetrafluoroethylene Polyurethane Poly(vinyl acetate) Poly(vinyl alcohol) Poly(vinyl butyral) Poly(vinyl chloride) Poly(vinylidene chloride) Poly(vinylidene fluoride) Poly(vinyl formal) Polyvinylcarbazole Styrene Acrylonitrile Styrene butadiene rubber Styrene-butadiene-styrene Urea-formaldehyde Unsaturated polyester... [Pg.434]

Methylene Chloride Fractionation of Cross-Coupled 1. 2 and 7. A sample of the block polymer (above 0.50g) was dissolved in 10 mL of methylene chloride. The soluton was stored at 2 C for 2 days. A polymer methylene chloride complex precipitate formed which was removed by filtration at 2aC. The precipitate was then heated at 50 to drive off the methylene chloride. The dried polymer weighed 0.43g and contained (based on IR analysis) 58% by weight of poly(phenylene oxide) and 42% by weight of polystyrene. Analysis of the filtrate after evaporation of the methylene chloride established the presence of a residue containing 17% polyphenylene oxide and 83% polystyrene. On the basis of these results, at least 72% of the initial polystyrene charged to the reaotion medium was calculated as having been incorporated into an acyl-coupled polyphenylene oxide-polystyrene block polymer. [Pg.196]

The simplest motional description is isotropic tumbling characterized by a single exponential correlation time ( ). This model has been successfully employed to interpret carbon-13 relaxation in a few cases, notably the methylene carbons in polyisobutylene among the well studied systems ( ). However, this model is unable to account for relaxation in many macromolecular systems, for instance polystyrene (6) and poly(phenylene oxide)(7,... [Pg.272]

Poly(phenylene ether) 170 Often alloyed with polystyrene... [Pg.609]

Polycarbonate is blended with a number of polymers including PET, PBT, acrylonitrile-butadiene-styrene terpolymer (ABS) rubber, and styrene-maleic anhydride (SMA) copolymer. The blends have lower costs compared to polycarbonate and, in addition, show some property improvement. PET and PBT impart better chemical resistance and processability, ABS imparts improved processability, and SMA imparts better retention of properties on aging at high temperature. Poly(phenylene oxide) blended with high-impact polystyrene (HIPS) (polybutadiene-gra/f-polystyrene) has improved toughness and processability. The impact strength of polyamides is improved by blending with an ethylene copolymer or ABS rubber. [Pg.143]

MPPE poly(phenylene ether) polystyrene blend... [Pg.35]

Gibson and coworkers utilized the expected complexation between crown ethers and acrylonitrile for the preparation of poly(acrylonitrile-crown ether rotax-ane)s 94 [137]. Relative to that with the polystyrene backbone, the enhanced threading supported the intermediacy of the expected complex. The reaction intermediates, the cations 95 and 96 in the preparation of poly(phenylene vinylene) (PPV) also provided a source for interaction with crown ethers [70], The solution polymerization of precursor 95 in the presence of crown ethers followed by transformation of 96 produced polyrotaxanes 97. [Pg.309]

The anisotropy of polarizability can be positive (eg, polycarbonate) as well as negative (eg, polystyrene). This offers the possibility of minimizing birefringence by copolymerization or blending of suitable polymers with the right mixture ratio, eg, blends of poly(phenylene ether) (PPE) and polystyrene (PS). The magnitude of birefringence of axial-symmetrically oriented polymers vs their molecule orientation has been described (182). [Pg.156]

As of 1992, the first specialty platable plastic, acrylonitrile—butadiene—styrene (ABS) terpolymer (see Acrylonitrile polymers, abs resins), is used in over 90% of POP applications. Other platable plastics include poly(phenylene ether) (see Polyethers), nylon (see Polyamides), polysulfone (see Polymers containing sulfur), polypropylene, polycarbonate, phenolics (see Pphenolic resins), polycarbonate—ABS alloys, polyesters (qv), foamed polystyrene (see Styrene plastics), and other foamed plastics (qv). [Pg.109]


See other pages where Polystyrene-poly phenylene is mentioned: [Pg.518]    [Pg.56]    [Pg.309]    [Pg.518]    [Pg.56]    [Pg.309]    [Pg.156]    [Pg.163]    [Pg.148]    [Pg.151]    [Pg.326]    [Pg.330]    [Pg.411]    [Pg.19]    [Pg.262]    [Pg.262]    [Pg.271]    [Pg.146]    [Pg.315]    [Pg.285]    [Pg.131]    [Pg.148]    [Pg.151]    [Pg.326]    [Pg.330]    [Pg.411]    [Pg.163]    [Pg.19]   


SEARCH



High-impact polystyrene-poly(phenylene

Poly -polystyrene

Poly(phenylenes)

Polystyrene-poly(phenylene oxide) blends

© 2024 chempedia.info