Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polypyrroles, assembly

FIG. 8 Si02 AFM image of six bilayers in situ self-assembled layer-by-layer films of polypyrrole coated with Si02 and poly(styrene sulfonate). [Pg.150]

The polypyrrole molecular interface has been electrochemically synthesized between the self-assembled protein molecules and the electrode surface for facilitating the enzyme with electron transfer to the electrode. Figure 9 illustrates the schematic procedure of the electrochemical preparation of the polypyrrole molecular interface. The electrode-bound protein monolayer is transferred in an electrolyte solution containing pyrrole. The electrode potential is controlled at a potential with a potentiostat to initiate the oxidative polymerization of pyrrole. The electrochemical polymerization should be interrupted before the protein monolayer is fully covered by the polypyrrole layer. A postulated electron transfer through the polypyrrole molecular interface is schematically presented in Fig. 10. [Pg.341]

In a further development, an ADH-MB-NAD/polypyrrole electrode, a platinum counter electrode and an Ag/AgCl reference electrode were assembled and covered with a gas-permeable polymer membrane to form an gaseous ethanol sensor. This appears to be the first time that a complete enzyme sensor for gaseous ethanol has been fabricated in such a manner with NAD incorporated in immobilized form. [Pg.353]

A solid-state solar cell was assembled with an ionic liquid—l-ethyl-3-methylimidazolium bis(trifluoromethanesulfone)amide (EMITFSA) containing 0.2 M lithium bis(trifluoromethanesulfone)amide and 0.2 M 4-tert-butylpyridine—as the electrolyte and Au or Pt sputtered film as the cathode.51,52 The in situ PEP of polypyrrole and PEDOT allows efficient hole transport between the ruthenium dye and the hole conducting polymer, which was facilitated by the improved electronic interaction of the HOMO of the ruthenium dye and the conduction band of the hole transport material. The best photovoltaic result ( 7p=0.62 %, 7SC=104 pA/cm2, FOC=0.716 V, and FF=0.78) was obtained from the ruthenium dye 5 with polypyrrole as the hole transport layer and the carbon-based counterelectrode under 10 mW/cm2 illumination. The use of carbon-based materials has improved the electric connectivity between the hole transport layer and the electrode.51... [Pg.169]

Kapui et al. prepared a novel type of polypyrrole films [168]. The film was impregnated by spherical styrene-methacrylic acid block copolymer micelles with a hydrophobic core of 18 nm and a hydrophilic corona of 100 nm. The properties of the micelle-doped polypyrrole films were investigated by cyclic voltammetry and SECM. It was found that the self-assembled block copolymer micelles in polypyrrole behave as polyanions and the charge compensation by cations has been identified during electrochemical switching of the polymer films. [Pg.236]

Figure 9 shows the discharge curves of a Type I polypyrrole-based, a Type II polypyrrole/poly(3-methylthiophene)-based and a Type III poly(dithieno[3,4-6 3, 4 -d]thiophene-based supercapacitor at 4 mA cm discharge current. Types I and II can be assembled using such conventional heterocyclic polymers as polypyrrole, polyaniline and polythiophene, which are efficiently p-dopable polymers and can easily be chemically or electrochemically synthesized from inexpensive... [Pg.3840]

A few groups examined larger systems by in situ STM. Examples include the deposition of polymers, polypyrrole, polyaniline,and polymethylthiophene. Hagenstrom et al. reported studies on imaging of self-assembled monolayers (SAM). "" They showed the possibihty of imaging detailed stmetures, and order-disorder transitions in dependence on electrochemical parameters. [Pg.350]

The following chapters will describe how the design and assembly of various important polymers can be used to produce predetermined properties. (The synthesis and properties of polypyrroles, polyanilines, and polythiophenes are discussed in detail and differences between these systems emphasized.) A multitude of other CEP systems exist, and the interested reader is referred to the extensive literature now available. Furthermore, the synthesis of CEPs to produce different forms that enable integration of all the functions required for intelligent operation or that allow incorporation into a larger structure will be described. [Pg.53]


See other pages where Polypyrroles, assembly is mentioned: [Pg.173]    [Pg.145]    [Pg.150]    [Pg.126]    [Pg.223]    [Pg.148]    [Pg.186]    [Pg.493]    [Pg.267]    [Pg.23]    [Pg.239]    [Pg.128]    [Pg.196]    [Pg.59]    [Pg.61]    [Pg.63]    [Pg.65]    [Pg.67]    [Pg.69]    [Pg.71]    [Pg.73]    [Pg.75]    [Pg.77]    [Pg.79]    [Pg.81]   


SEARCH



Polypyrrol

Polypyrrole

Polypyrroles

Polypyrrolic

© 2024 chempedia.info