Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization Process Productivity

Efficiencies Related to Composite Films Electrogenerated from 1 M Pyrrole plus 10 2 M Sodium Polyacrylate Aqueous Solution by Polarization of a 1-cm2 Platinum Electrode at 800 mV for Different Polymerization Times [Pg.323]


The reaction mechanisms of plasma polymerization processes are not understood in detail. Poll et al [34] (figure C2.13.6) proposed a possible generic reaction sequence. Plasma-initiated polymerization can lead to the polymerization of a suitable monomer directly at the surface. The reaction is probably triggered by collisions of energetic ions or electrons, energetic photons or interactions of metastables or free radicals produced in the plasma with the surface. Activation processes in the plasma and the film fonnation at the surface may also result in the fonnation of non-reactive products. [Pg.2807]

It is the third of these criteria that offers the most powerful insight into the nature of the polymerization process for this important class of materials. We shall frequently use the terms step-growth and condensation polymers as synonyms, although by the end of the chapter it will be apparent that step-growth polymerization encompasses a wider range of reactions and products than either criteria (1) or (2) above would indicate. [Pg.273]

A schematic of a continuous bulk SAN polymerization process is shown in Figure 4 (90). The monomers are continuously fed into a screw reactor where copolymerization is carried out at 150°C to 73% conversion in 55 min. Heat of polymerization is removed through cooling of both the screw and the barrel walls. The polymeric melt is removed and fed to the devolatilizer to remove unreacted monomers under reduced pressure (4 kPa or 30 mm Hg) and high temperature (220°C). The final product is claimed to contain less than 0.7% volatiles. Two devolatilizers in series are found to yield a better quaUty product as well as better operational control (91,92). [Pg.195]

PVDE is manufactured using radical initiated batch polymerization processes in aqueous emulsion or suspension operating pressures may range from 1 to 20 MPa (10—200 atm) and temperatures from 10 to 130°C. Polymerization method, temperature, pressure, recipe ingredients, the manner in which they are added to the reactor, the reactor design, and post-reactor processing are variables that influence product characteristics and quaUty. [Pg.386]

Three bulk polymerization processes are commercially important for the production of methacrylate polymers batch cell casting, continuous casting, and continuous bulk polymerization. Approximately half the worldwide production of bulk polymerized methacrylates is in the form of molding and extmsion compounds, a quarter is in the form of cell cast sheets, and a quarter is in the form of continuous cast sheets. [Pg.265]

Polymerization Processes. Isotactic PB and PMP are produced commercially in slurry processes in Hquid monomers or monomer mixtures (optionally diluted with light inert hydrocarbons) at 50—70°C. The first commercial process for PB production used a highly isospecific... [Pg.430]

THE can be polymerized by many strongly acidic catalysts, but not all of them produce the requked bitimctional polyether glycol with a minimum of by-products. Several large-scale commercial polymerization processes are based on fluorosulfonic acid, HESO, catalysis, which meets all these requkements. The catalyst is added to THE at low temperatures and an exothermic polymerization occurs readily. The polymerization products are poly(tetramethylene ether) chains with sulfate ester groups (8). [Pg.364]

Many other polymerization processes have been patented, but only some of them appear to be developed or under development ia 1996. One large-scale process uses an acid montmorrillonite clay and acetic anhydride (209) another process uses strong perfiuorosulfonic acid reski catalysts (170,210). The polymerization product ia these processes is a poly(tetramethylene ether) with acetate end groups, which have to be removed by alkaline hydrolysis (211) or hydrogenolysis (212). If necessary, the product is then neutralized, eg, with phosphoric acid (213), and the salts removed by filtration. Instead of montmorrillonite clay, other acidic catalysts can be used, such as EuUer s earth or zeoHtes (214—216). [Pg.364]

Catalyst Development. Traditional slurry polypropylene homopolymer processes suffered from formation of excessive amounts of low grade amorphous polymer and catalyst residues. Introduction of catalysts with up to 30-fold higher activity together with better temperature control have almost eliminated these problems (7). Although low reactor volume and available heat-transfer surfaces ultimately limit further productivity increases, these limitations are less restrictive with the introduction of more finely suspended metallocene catalysts and the emergence of industrial gas-phase fluid-bed polymerization processes. [Pg.508]

One of the key benefits of anionic PS is that it contains much lower levels of residual styrene monomer than free-radical PS (167). This is because free-radical polymerization processes only operate at 60—80% styrene conversion, whereas anionic processes operate at >99% styrene conversion. Removal of unreacted styrene monomer from free-radical PS is accompHshed using continuous devolatilization at high temperature (220—260°C) and vacuum. This process leaves about 200—800 ppm of styrene monomer in the product. Taking the styrene to a lower level requires special devolatilization procedures such as steam stripping (168). [Pg.517]

The Hquid monomers are suitable for bulk polymerization processes. The reaction can be conducted in a mold (casting, reaction injection mol ding), continuously on a conveyor (block and panel foam production), or in an extmder (thermoplastic polyurethane elastomers and engineering thermoplastics). Also, spraying of the monomers onto the surface of suitable substrates provides insulation barriers or cross-linked coatings. [Pg.342]

Suspension Polymerization. At very low levels of stabilizer, eg, 0.1 wt %, the polymer does not form a creamy dispersion that stays indefinitely suspended in the aqueous phase but forms small beads that setde and may be easily separated by filtration (qv) (69). This suspension or pearl polymerization process has been used to prepare polymers for adhesive and coating appHcations and for conversion to poly(vinyl alcohol). Products in bead form are available from several commercial suppHers of PVAc resins. Suspension polymerizations are carried out with monomer-soluble initiators predominantly, with low levels of stabilizers. Suspension copolymerization processes for the production of vinyl acetate—ethylene bead products have been described and the properties of the copolymers determined (70). Continuous tubular polymerization of vinyl acetate in suspension (71,72) yields stable dispersions of beads with narrow particle size distributions at high yields. [Pg.465]

Poly(vinyl chloride). Poly(vinyl chloride) (PVC) [9002-86-2] is a thermoplastic for building products. It is prepared by either the bulk or the suspension polymerization process. In each process residual monomer is removed because it is carcinogenic. Oxygen must be avoided throughout the process (see Vinyl polymers). [Pg.327]

The original SBR process is carried out at. 50° C and is referred to as hot polymerization. It accounts for only about 5% of aU the mbber produced today. The dominant cold polymerization technology today employs more active initiators to effect polymerization at about 5°C. It accounts for about 85% of the products manufactured. Typical emulsion polymerization processes incorporate about 75% butadiene. The initiators are based on persulfate in conjunction with mercaptans (197), or organic hydroperoxide in conjunction with ferrous ion (198). The rest of SBR is produced by anionic solution polymerization. The density of unvulcanized SBR is 0.933 (199). The T ranges from —59" C to —64 C (199). [Pg.345]

In the production of a-olefins, ethylene reacts with an aluminum alkyl at relatively low temperature to produce a higher aLkylalumiaum. This is then subjected to a displacement reaction with ethylene at high temperatures to yield a mixture of a-olefins and triethylalumiaum. In an alternative process, both reactions are combiaed at high temperatures and pressures where triethylalumiaum fuactioas as a catalyst ia the polymerization process. [Pg.433]

Polymerization processes are characterized by extremes. Industrial products are mixtures with molecular weights of lO" to 10. In a particular polymerization of styrene the viscosity increased by a fac tor of lO " as conversion went from 0 to 60 percent. The adiabatic reaction temperature for complete polymerization of ethylene is 1,800 K (3,240 R). Heat transfer coefficients in stirred tanks with high viscosities can be as low as 25 W/(m °C) (16.2 Btu/[h fH °F]). Reaction times for butadiene-styrene rubbers are 8 to 12 h polyethylene molecules continue to grow lor 30 min whereas ethyl acrylate in 20% emulsion reacts in less than 1 min, so monomer must be added gradually to keep the temperature within hmits. Initiators of the chain reactions have concentration of 10" g mol/L so they are highly sensitive to poisons and impurities. [Pg.2102]

The cation [NSO(NPCl2)2] (14.11) is the proposed intermediate in this ring-opening polymerization process. This cation is extremely reactive, as illustrated by the isolation of the solvent-derived product 14.12 when it is generated by halide abstraction from the cyclic precursor with AICI3 in l,2-dichloroethane. °... [Pg.287]

Because dideoxynucleotides lack 3 -OH groups, these nucleotides cannot serve as acceptors for 5 -nucleotide addition in the polymerization reaction, and thus the chain is terminated where they become incorporated. The concentrations of the four deoxynucleotides and the single dideoxynucleotide in each reaction mixture are adjusted so that the dideoxynucleotide is incorporated infrequently. Therefore, base-specific premature chain termination is only a random, occasional event, and a population of new strands of varying length is synthesized. Four reactions are run, one for each dideoxynucleotide, so that termination, although random, can occur everywhere in the sequence. In each mixture, each newly synthesized strand has a dideoxynucleotide at its 3 -end, and its presence at that position demonstrates that a base of that particular kind was specified by the template. A radioactively labeled dNTP is included in each reaction mixture to provide a tracer for the products of the polymerization process. [Pg.358]


See other pages where Polymerization Process Productivity is mentioned: [Pg.321]    [Pg.883]    [Pg.321]    [Pg.883]    [Pg.279]    [Pg.280]    [Pg.282]    [Pg.333]    [Pg.350]    [Pg.419]    [Pg.259]    [Pg.411]    [Pg.413]    [Pg.234]    [Pg.283]    [Pg.296]    [Pg.299]    [Pg.361]    [Pg.364]    [Pg.444]    [Pg.426]    [Pg.508]    [Pg.515]    [Pg.459]    [Pg.186]    [Pg.482]    [Pg.483]    [Pg.135]    [Pg.551]    [Pg.1113]    [Pg.225]    [Pg.32]    [Pg.15]    [Pg.350]    [Pg.287]   


SEARCH



Polymeric products

© 2024 chempedia.info