Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyvinyl chloride polymerization

This idea becomes even more pointed when we look at polymerization. Polyvinyl chloride is the familiar plastic PVC and is made by reaction of large numbers of monomeric vinyl chloride molecules. There is, of course, an enormous decrease in entropy in this reaction and any polymerization will not occur above a certain temperature. Some polymers can be depolymerized at high temperatures and this can be the basis for recycling, low... [Pg.315]

If one hydrogen is replaced with chlorine in the ethylene molecule, vinyl chloride is formed. If vinyl chloride polymerizes polyvinyl chloride, known as PVC, is formed. PVC is lightweight, long lasting, and waterproof. In its rigid form, PVC is water-resistant and can be drawn out into pipes, house siding and drainpipes. It is also used in compact discs and computer casings. [Pg.69]

When vinyl chloride is polymerized, polyvinyl chloride (PVQ is obtained. [Pg.530]

The paper discusses the application of dynamic indentation method and apparatus for the evaluation of viscoelastic properties of polymeric materials. The three-element model of viscoelastic material has been used to calculate the rigidity and the viscosity. Using a measurements of the indentation as a function of a current velocity change on impact with the material under test, the contact force and the displacement diagrams as a function of time are plotted. Experimental results of the testing of polyvinyl chloride cable coating by dynamic indentation method and data of the static tensile test are presented. [Pg.239]

In the suspension polymerization of PVC, droplets of monomer 30—150 p.m in diameter are dispersed in water by agitation. A thin membrane is formed at the water—monomer interface by dispersants such as poly(vinyl alcohol) or methyl cellulose. This membrane, isolated by dissolving the PVC in tetrahydrofuran and measured at 0.01—0.02-p.m thick, has been found to be a graft copolymer of polyvinyl chloride and poly(vinyl alcohol) (4,5). Early in the polymerization, particles of PVC deposit onto the membrane from both the monomer and the water sides, forming a skin 0.5—5-p.m thick that can be observed on grains sectioned after polymerization (4,6). Primary particles, 1 p.m in diameter, deposit onto the membrane from the monomer side (Pig. 1), whereas water-phase polymer, 0.1 p.m in diameter, deposits onto the skin from the water side of the membrane (Pig. 2) (4). These domain-sized water-phase particles may be one source of the observed domain stmcture (7). [Pg.495]

Vinyl chloride (1835) formed by reacting acetylene with hydrochloric acid, was polymerized a.v polyvinyl chloride (PVC) in 1912, The theory of polymerization by Staudinger in the 1920s- led to the advances that followed. The acrylate were polymerized as polymethylmethacrylate to come into production in 1927. Polystyrene was developed. similarly and concurrently. Polyethylene came into production in 1939 for use in radar and now is ubiquitous. [Pg.277]

Copolymers of vinyl chloride, containing 5 to 40 percent vinyl acetate made by the inclusion of vinyl acetate in the polymerization process, have lower softening points and flow more easily than polyvinyl chloride. They are soluble in ketones, such as acetone, and certain esters for making film from solutions. They are used for phonograph records, rigid clear sheeting, and molding pov... [Pg.281]

Figure 12-4. The European Vinyls Corp. process for producing polyvinyl chloride using suspension polymerization (1) reactor, (2) blow-down vessels (to separate unreacted monomer), (3) stripping column, (4) reacted monomer recovery, (5) slurry centrifuge, (6) slurry drier. Figure 12-4. The European Vinyls Corp. process for producing polyvinyl chloride using suspension polymerization (1) reactor, (2) blow-down vessels (to separate unreacted monomer), (3) stripping column, (4) reacted monomer recovery, (5) slurry centrifuge, (6) slurry drier.
Quite naturally, novel techniques for manufacturing composite materials are in principal rare. The polymerization filling worked out at the Chemical Physics Institute of the USSR Academy of Sciences is an example of such techniques [49-51], The essence of the technique lies in that monomer polymerization takes place directly on the filler surface, i.e. a composite material is formed in the polymer forming stage which excludes the necessity of mixing constituents of a composite material. Practically, any material may be used as a filler the use of conducting fillers makes it possible to obtain a composite material having electrical conductance. The material thus obtained in the form of a powder can be processed by traditional methods, with polymers of many types (polyolefins, polyvinyl chloride, elastomers, etc.) used as a matrix. [Pg.140]

The most common backbone structure found in commercial polymers is the saturated carbon-carbon structure. Polymers with saturated carbon-carbon backbones, such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, and polyacrylates, are produced using chain-growth polymerizations. The saturated carbon-carbon backbone of polyethylene with no side groups is a relatively flexible polymer chain. The glass transition temperature is low at -20°C for high-density polyethylene. Side groups on the carbon-carbon backbone influence thermal transitions, solubility, and other polymer properties. [Pg.4]

Thermal Effects in Addition Polymerizations. Table 13.2 shows the heats of reaction (per mole of monomer reacted) and nominal values of the adiabatic temperature rise for complete polymerization. The point made by Table 13.2 is clear even though the calculated values for T dia should not be taken literally for the vinyl addition polymers. All of these pol5Tners have ceiling temperatures where polymerization stops. Some, like polyvinyl chloride, will dramatically decompose, but most will approach equilibrium between monomer and low-molecular-weight polymer. A controlled polymerization yielding high-molecular-weight pol)mier requires substantial removal of heat or operation at low conversions. Both approaches are used industrially. [Pg.468]

The properties of a polymer depend not only on its gross chemical composition but also on its molecular weight distribution, copolymer composition distribution, branch length distribution, and so on. The same monomer(s) can be converted to widely differing polymers depending on the polymerization mechanism and reactor type. This is an example of product by process, and no single product is best for all applications. Thus, there are several commercial varieties each of polyethylene, polystyrene, and polyvinyl chloride that are made by distinctly different processes. [Pg.492]

When many molecules combine the macromolecule is termed a polymer. Polymerization can be initiated by ionic or free-radical mechanisms to produce molecules of very high molecular weight. Examples are the formation of PVC (polyvinyl chloride) from vinyl chloride (the monomer), polyethylene from ethylene, or SBR synthetic rubber from styrene and butadiene. [Pg.25]

Addition polymers, which are also known as chain growth polymers, make up the bulk of polymers that we encounter in everyday life. This class includes polyethylene, polypropylene, polystyrene, and polyvinyl chloride. Addition polymers are created by the sequential addition of monomers to an active site, as shown schematically in Fig. 1.7 for polyethylene. In this example, an unpaired electron, which forms the active site at the growing end of the chain, attacks the double bond of an adjacent ethylene monomer. The ethylene unit is added to the end of the chain and a free radical is regenerated. Under the right conditions, chain extension will proceed via hundreds of such steps until the supply of monomers is exhausted, the free radical is transferred to another chain, or the active site is quenched. The products of addition polymerization can have a wide range of molecular weights, the distribution of which depends on the relative rates of chain grcnvth, chain transfer, and chain termination. [Pg.23]

In suspension polymerization, the monomer is agitated in a solvent to form droplets, and then stabilized through the use of surfactants to form micelles. The added initiator is soluble in the solvent such that the reaction is initiated at the skin of the micelle. Polymerization starts at the interface and proceeds towards the center of the droplet. Polystyrene and polyvinyl chloride are often produced via suspension polymerization processes. [Pg.56]

The vinyl chloride monomer polymerizes via addition polymerization to form polyvinyl chloride. The final polymer has the chemical composition shown in Fig. 22.1. The polymer exhibits limited crystallinity, though this property is not often considered as important in defining its performance. It tends to be atactic or regionally syndiotactic, surrounded by extended atactic runs. When exposed to temperatures above 100 °C, polyvinyl chloride decomposes, creating free radicals that further attack the polymer chain, as we shall discuss in more detail later. For this reason, the degradation of polyvinyl chloride is autocatalytic... [Pg.343]

Figure 22.3 Example of weight average molecular weight of polyvinyl chloride as a function of polymerization temperature... Figure 22.3 Example of weight average molecular weight of polyvinyl chloride as a function of polymerization temperature...
Vinyl chloride polymerization occurs via an exothermic radical reaction. In fact, the reaction is approximately 25% more exothermic than polyethylene polymerization. The highly exothermic nature of the reaction and the strong molecular weight dependence on temperature make heat transfer, and its control, critical to the manufacture of polyvinyl chloride. [Pg.345]

Why is the reaction temperature of polymerization of polyvinyl chloride so important to its manufacture ... [Pg.356]

Why are suspension and emulsion polymerization processes the primary methods by which polyvinyl chloride is manufactured How are these processes carried out ... [Pg.356]

Various polymeric materials were tested statically with both gaseous and liquefied mixtures of fluorine and oxygen containing from 50 to 100% of the former. The materials which burned or reacted violently were phenol-formaldehyde resins (Bakelite) polyacrylonitrile-butadiene (Buna N) polyamides (Nylon) polychloroprene (Neoprene) polyethylene polytriflu-oropropylmethylsiloxane (LS63) polyvinyl chloride-vinyl acetate (Tygan) polyvinylidene fluoride-hexafluoropropylene (Viton) polyurethane foam. Under dynamic conditions of flow and pressure, the more resistant materials which binned were chlorinated polyethylenes, polymethyl methacrylate (Perspex) polytetraflu-oroethylene (Teflon). [Pg.1519]

Vinyl chloride has been known for over a hundred years and its polymerization to polyvinyl chloride (PVC) was achieved in 1912. Industrial-scale production of this plastic began in 1927. PVC is still the most versatile plastic. One of the reasons for this is the numerous variations made possible by the method of manufacture of the polymer, namely by copolymerization with other monomers and their processing. Thus, PVC can be thermoformed on all conventional processing machines if the slight thermal damage is taken into consideration. Machining is easy and the material can be bonded, bent, welded, printed and thermoformed. [Pg.167]


See other pages where Polyvinyl chloride polymerization is mentioned: [Pg.127]    [Pg.13]    [Pg.127]    [Pg.13]    [Pg.175]    [Pg.317]    [Pg.420]    [Pg.475]    [Pg.108]    [Pg.278]    [Pg.285]    [Pg.1470]    [Pg.936]    [Pg.1036]    [Pg.28]    [Pg.207]    [Pg.282]    [Pg.282]    [Pg.346]    [Pg.346]    [Pg.79]    [Pg.315]    [Pg.294]    [Pg.769]   
See also in sourсe #XX -- [ Pg.699 ]




SEARCH



Chloride Polymerization

Free-radical-initiated chain polymerization polyvinyl chloride

Polymeric materials polyvinyl chloride

Polymerization of polyvinyl chloride

Polyvinyl chloride

Polyvinyl chloride emulsion polymerization

Polyvinyl chloride mass polymerization

Polyvinyl chloride suspension polymerization

© 2024 chempedia.info