Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Side monomers

The successful preparation of polymers is achieved only if tire macromolecules are stable. Polymers are often prepared in solution where entropy destabilizes large molecular assemblies. Therefore, monomers have to be strongly bonded togetlier. These links are best realized by covalent bonds. Moreover, reaction kinetics favourable to polymeric materials must be fast, so tliat high-molecular-weight materials can be produced in a reasonable time. The polymerization reaction must also be fast compared to side reactions tliat often hinder or preclude tire fonnation of the desired product. [Pg.2515]

Another approach to the fabrication of LB films from prefonned polymers is to fonn a hydrophobic main chain by reacting monomers tenninated by a vinyl group [102, 103, 104, 105 and 106]. The side groups studied also included perfluorinated hydrocarbon chains, which tilt with respect to the nonnal to the plane of the film, whereas the analogous ordinary hydrocarbon chains do not [105]. [Pg.2619]

Place 25 g. of methyl methacrylate polymer (G.B. Diakon (powder). Perspex (sheet) U.S.A. Lucite, Plexiglass) in a 100 ml. Claisen flask, attach an efficient condenser e.g., of the double smface type) and distil with a small luminous flame move the flame to and fro around the sides of the flask. At about 300° the polymer softens and undergoes rapid depolymerisation to the monomer, methyl methacrylate, which distils over into the receiver. Continue the distillation until only a small black residue (3-4 g.) remains. Redistil the hquid it passes over at 100-110°, mainly at 100-102°. The yield of methyl methacrylate (monomer) is 20 g. If the monomer is to be kept for any period, add 0 -1 g. of hydro quinone to act as a stabiUser or inhibitor of polymerisation. [Pg.1023]

Remember from Sec. 1.3 that graft copolymers have polymeric side chains which differ in the nature of the repeat unit from the backbone. These can be prepared by introducing a prepolymerized sample of the backbone polymer into a reactive mixture—i.e., one containing a source of free radicals—of the side-chain monomer. As an example, consider introducing polybutadiene into a reactive mixture of styrene ... [Pg.394]

Polyester composition can be determined by hydrolytic depolymerization followed by gas chromatography (28) to analyze for monomers, comonomers, oligomers, and other components including side-reaction products (ie, DEG, vinyl groups, aldehydes), plasticizers, and finishes. Mass spectroscopy and infrared spectroscopy can provide valuable composition information, including end group analysis (47,101,102). X-ray fluorescence is commonly used to determine metals content of polymers, from sources including catalysts, delusterants, or tracer materials added for fiber identification purposes (28,102,103). [Pg.332]

The main raw material required for the production of viscose is ceUulose (qv), a natural polymer of D-glucose (Fig. 1). The repeating monomer unit is a pair of anhydroglucose units (AGU). CeUulose and starch (qv) are identical but for the way in which the ring oxygen atoms alternate from side to side of the polymer chain (beta linkages) in ceUulose, but remain on the same side (alpha linkages) in starch. [Pg.345]

Uses. Vinyhdene fluoride is used for the manufacture of PVDF and for copolymerization with many fluorinated monomers. One commercially significant use is the manufacture of high performance fluoroelastomers that include copolymers of VDF with hexafluoropropylene (HFP) (62) or chlorotrifluoroethylene (CTFE) (63) and terpolymers with HEP and tetrafluoroethylene (TEE) (64) (see Elastomers, synthetic-fluorocarbon elastomers). There is intense commercial interest in thermoplastic copolymers of VDE with HEP (65,66), CTEE (67), or TEE (68). Less common are copolymers with trifluoroethene (69), 3,3,3-trifluoro-2-trifluoromethylpropene (70), or hexafluoroacetone (71). Thermoplastic terpolymers of VDE, HEP, and TEE are also of interest as coatings and film. A thermoplastic elastomer that has an elastomeric VDE copolymer chain as backbone and a grafted PVDE side chain has been developed (72). [Pg.386]

In general, an appropriate initiator is a species which has approximately the same stmcture and reactivity as the propagating anionic species, ie, the piC of the conjugate acid of the propagating anion should correspond closely to the piC of the conjugate acid of the initiating species. If the initiator is too reactive, side reactions between the initiator and monomer can occur if the initiator is not reactive enough, then the initiation reaction may be slow or inefficient. [Pg.236]

Thermal, Thermooxidative, and Photooxidative Degradation. Polymers of a-olefins have at least one tertiary C-H bond in each monomer unit of polymer chains. As a result, these polymers are susceptible to both thermal and thermooxidative degradation. Reactivity in degradation reactions is especially significant in the case of polyolefins with branched alkyl side groups. For example, thermal decomposition of... [Pg.426]

In addition, however, several minor but important side reactions concurrently proceed with the main reaction. These side reactions may become significant under certain conditions, particularly when the main reaction is slow because of low monomer reactivities or low concentrations. The principal pathways involved in the formation of poly(amic acid) are as shown in Eigure 1. [Pg.398]

This compound is soluble in most organic solvents and may be easily copolymerized with other vinyl monomers to introduce reactive side groups on the polymer chain (18). Such reactive polymer chains may then be used to modify other polymers including other amino resins. It may be desirable to produce the cross-links first. Thus, A/-methylolacrylamide can react with more acrylamide to produce methylenebisacrylamide, a tetrafunctional vinyl monomer. [Pg.323]

OC-Methylstyrene. This compound is not a styrenic monomer in the strict sense. The methyl substitution on the side chain, rather than the aromatic ring, moderates its reactivity in polymerization. It is used as a specialty monomer in ABS resins, coatings, polyester resins, and hot-melt adhesives. As a copolymer in ABS and polystyrene, it increases the heat-distortion resistance of the product. In coatings and resins, it moderates reaction rates and improves clarity. Physical properties of a-methylstyrene [98-83-9] are shown in Table 12. [Pg.490]

Hydrophilic spacer groups may be introduced into a polymer through the side chain, the main chain, or both. Films can be prepared using different values of monomer feed (62). [Pg.535]


See other pages where Side monomers is mentioned: [Pg.3193]    [Pg.69]    [Pg.285]    [Pg.3193]    [Pg.69]    [Pg.285]    [Pg.2515]    [Pg.2629]    [Pg.2644]    [Pg.44]    [Pg.45]    [Pg.729]    [Pg.350]    [Pg.12]    [Pg.304]    [Pg.309]    [Pg.349]    [Pg.378]    [Pg.319]    [Pg.176]    [Pg.277]    [Pg.282]    [Pg.326]    [Pg.365]    [Pg.387]    [Pg.431]    [Pg.65]    [Pg.220]    [Pg.245]    [Pg.451]    [Pg.201]    [Pg.201]    [Pg.265]    [Pg.153]    [Pg.393]    [Pg.398]    [Pg.432]    [Pg.433]    [Pg.42]    [Pg.249]    [Pg.516]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Monomers with Bulky Side Substituents

Monomers, mechanism, side reactions

Nonlinear Optical Side Chain Monomers

Termination and Side Reactions of Polar Monomers

© 2024 chempedia.info