Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerization advantages

Automated feedback control systems for batch polymerizations advantages, 475... [Pg.555]

Alkyl methacrylates, hydrolysis of polymeric ester functionality, 259 Aluminum-hydrogen bond, nucleophilic substitution, 264 Amines alkylation, 28 benzyl-group cleavage, 25 Aminomethylation chloromethylated polymers, 19 Deltfpine reaction, 19 Anionic polymerization advantages, 85... [Pg.472]

Derivatives of polyisobutylene (6. in Figure 9.1) offer the advantage of control over the molecular weight of the polyisobutylene obtained by cationic polymerization of isobutylene. Condensation on maleic anhydride can be done directly either by thermal activation ( ene-synthesis reaction) (2.1), or by chlorinated polyisobutylene intermediates (2.2). The condensation of the PIBSA on polyethylene polyamines leads to succinimides. Note that one can obtain mono- or disuccinimides. The mono-succinimides are used as... [Pg.348]

Emulsion polymerization also has the advantages of good heat transfer and low viscosity, which follow from the presence of the aqueous phase. The resulting aqueous dispersion of polymer is called a latex. The polymer can be subsequently separated from the aqueous portion of the latex or the latter can be used directly in eventual appUcations. For example, in coatings applications-such as paints, paper coatings, floor pohshes-soft polymer particles coalesce into a continuous film with the evaporation of water after the latex has been applied to the substrate. [Pg.403]

Nxylylene system, substituents affect it only to a minor extent. AH parylenes are expected to have a similar molar enthalpy of polymerization. An experimental value for the heat of polymerization of Parylene C has appeared. Using the gas evolution from the Hquid nitrogen cold trap to measure thermal input from the polymer, and taking advantage of a peculiarity of Parylene C at — 196°C to polymerize abmptiy, perhaps owing to the arrival of a free radical, a = —152 8 kJ/mol (—36.4 2.0 kcal/mol) at — 196°C was reported (25). The correction from — 196°C to room temperature is... [Pg.431]

Aluminum chloride hydroxide [1327-41 -9] also called polyaluminum chloride or PAG, is made by partial hydrolysis of aluminum chloride to form a mixture of polymeric species. It is more expensive than alum on a weight basis, but has advantages over alum such as not lowering the pH as much and better cost-effectiveness in some appHcations. Residual aluminum in the water is said to be lower and performance in cold water is better (6,7). It is sold as a solution (see Aluminum compounds, polyaluminum cm ORiDEs). [Pg.31]

There are two main advantages of acrylamide—acryUc-based flocculants which have allowed them to dominate the market for polymeric flocculants in many appHcation areas. The first is that these polymers can be made on a commercial scale with molecular weights up to 10—15 million which is much higher than any natural product. The second is that their electrical charge in solution and the charge density can be varied over a wide range by copolymerizing acrylamide with a variety of functional monomers or by chemical modification. [Pg.33]

These methodologies have been reviewed (22). In both methods, synthesis involves assembly of protected peptide chains, deprotection, purification, and characterization. However, the soHd-phase method, pioneered by Merrifield, dominates the field of peptide chemistry (23). In SPPS, the C-terminal amino acid of the desired peptide is attached to a polymeric soHd support. The addition of amino acids (qv) requires a number of relatively simple steps that are easily automated. Therefore, SPPS contains a number of advantages compared to the solution approach, including fewer solubiUty problems, use of less specialized chemistry, potential for automation, and requirement of relatively less skilled operators (22). Additionally, intermediates are not isolated and purified, and therefore the steps can be carried out more rapidly. Moreover, the SPPS method has been shown to proceed without racemization, whereas in fragment synthesis there is always a potential for racemization. Solution synthesis provides peptides of relatively higher purity however, the addition of hplc methodologies allows for pure peptide products from SPPS as well. [Pg.200]

G-9 Aromatic Petroleum Resins. Feedstocks typically used for aromatic petroleum resin synthesis boil in the approximate range of 100—300°C at atmospheric pressure, with most boiling in the 130—200°C range. The C-9 designation actually includes styrene (C-8) through C-10 hydrocarbons (eg, methylindene). Many of the polymerizable monomers identified in Table 1 for coumarone—indene type cmdes from coal tar are also present in aromatic fractions from cracked petroleum distillates. Therefore, the technology developed for the polymerization of coal-tar cmdes is also appHcable to petroleum-derived aromatic feedstocks. In addition to availabiHty, aromatic petroleum resins offer several advantages over coumarone—indene resins. These include improved color and odor, as weU as uv and thermal stabiHty (46). [Pg.354]

The majority of thermal polymerizations are carried out as a batch process, which requires a heat-up and a cool down stage. Typical conditions are 250—300°C for 0.5—4 h in an oxygen-free atmosphere (typically nitrogen) at approximately 1.4 MPa (200 psi). A continuous thermal polymerization has been reported which utilizes a tubular flow reactor having three temperature zones and recycle capabiHty (62). The advantages of this process are reduced residence time, increased production, and improved molecular weight control. Molecular weight may be controlled with temperature, residence time, feed composition, and polymerizate recycle. [Pg.355]

Thermoplastic resins produced from pure monomers such as styrene, alkyl-substituted styrenes, and isobutylene are produced commercially. An advantage of these resins is the fact that they are typically lighter in color than Gardner 1 (water-white) without being hydrogenated. Among the earliest resins in this category were those made from styrene and sold as Piccolastic. Styrene and alkyl-substituted styrenes such as a-methylstyrene are very reactive toward Friedel-Crafts polymerization catalysts. [Pg.355]

Itaconic acid is a specialty monomer that affords performance advantages to certain polymeric coatings (qv) (see Polyesters, unsaturated). Emulsion stabihty, flow properties of the formulated coating, and adhesion to substrates are improved by the acid. Acrylonitrile fibers with low levels of the acid comonomer exhibit improved dye receptivity which allows mote efficient dyeing to deeper shades (see Acrylonitrile polymers Fibers, acrylic) (10,11). Itaconic acid has also been incorporated in PAN precursors of carbon and graphite fibers (qv) and into ethylene ionomers (qv) (12). [Pg.472]


See other pages where Polymerization advantages is mentioned: [Pg.1916]    [Pg.2807]    [Pg.184]    [Pg.174]    [Pg.610]    [Pg.397]    [Pg.68]    [Pg.318]    [Pg.170]    [Pg.204]    [Pg.204]    [Pg.48]    [Pg.278]    [Pg.280]    [Pg.287]    [Pg.327]    [Pg.333]    [Pg.469]    [Pg.502]    [Pg.155]    [Pg.298]    [Pg.465]    [Pg.244]    [Pg.372]    [Pg.23]    [Pg.42]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Advantages of Emulsion Polymerization

Advantages over organic polymeric

Advantages over organic polymeric membranes

Degradable polymeric implants advantages

Free radical polymerization advantages

Free-radical polymerization advantages/disadvantages

Laser-induced polymerization advantages

Living polymerizations, advantages

Phase polymerization, advantage

Polymeric anions advantage

Polymeric drug delivery advantages

Polymeric materials, advantages

Polymeric materials, advantages nonlinear optical material

Polymeric surfactants, advantage

Polymeric transfer reagents advantages

Polymerization reactions, advantages

Stable free radical polymerization advantages

Suspension polymerization advantages

© 2024 chempedia.info