Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

POLYMERISATION Subject

Perfluoroepoxid.es were first prepared ia the late 1950s by Du Pont Co. Subsequent work on these compounds has taken place throughout the world and is the subject of a number of reviews (1 5). The main use of these epoxides is as intermediates in the preparation of other fluorinated monomers. Although the polymerisation of the epoxides has been described (6—12), the resulting homopolymers and their derivatives are not significant commercial products. Almost all the work on perfluoroepoxides has been with three compounds tetrafluoroethylene oxide (TFEO), hexafluoropropylene oxide (HFPO), and perfluoroisobutylene oxide (PIBO). Most of this work has dealt with HFPO, the most versatile and by far the most valuable of this class of materials (4). [Pg.301]

Shipment Methods and Packaging. Pyridine (1) and pyridine compounds can be shipped in bulk containers such as tank cars, rail cars, and super-sacks, or in smaller containers like fiber or steel dmms. The appropriate U.S. Department of Transportation (DOT) requirements for labeling are given in Table 4. Certain temperature-sensitive pyridines, such as 2-vinylpyridine (23) and 4-vinylpyridine are shipped cold (<—10°C) to inhibit polymerisation. Piperidine (18) and certain piperidine salts are regulated within the United States by the Dmg Enforcement Agency (DEA) (77). Pyridines subject to facile oxidation, like those containing aldehyde and carbinol functionaUty, can be shipped under an inert atmosphere. [Pg.333]

The narrow molecular weight distribution means that the melts are more Newtonian (see Section 8.2.5) and therefore have a higher melt viscosity at high shear rates than a more pseudoplastic material of similar molecular dimensions. In turn this may require more powerful extruders. They are also more subject to melt irregularities such as sharkskin and melt fracture. This is one of the factors that has led to current interest in metallocene-polymerised polypropylenes with a bimodal molecular weight distribution. [Pg.259]

The styrene-diene triblocks, the main subject of this section, are made by sequential anionic polymerisation (see Chapter 2). In a typical system cc-butyl-lithium is used to initiate styrene polymerisation in a solvent such as cyclohexane. This is a specific reaction of the type... [Pg.297]

The polymers were first described by Newkirk. Polymerisation may be brought about by subjecting acetylene-free vinyl fluoride to pressures to up to 1000 atm at 80°C in the presence of water and a trace of benzoyl peroxide. [Pg.376]

PET suitable for bottle manufacture is produced by a modified process. Here the high-viscosity polymer melt is subjected to a rapid quenching in water to produce clear amoiphous pellets. These are further polymerised in the solid phase at temperatures just below the T . This is useful to reduce aldehyde content, since aldehyde-forming degradation reactions occur less in the lower temperature solid phase polymerisations. Aldehydes can impart a taste to beverages and it is important to keep the aldehyde content to below 2.5 p.p.m. [Pg.718]

Mention may finally be made of graft polymers derived from natural rubber which have been the subject of intensive investigation but which have not achieved commercial significance. It has been found that natural rubber is an efficient chain transfer agent for free-radical polymerisation and that grafting appears to occur by the mechanism shown in Figure 30.8. [Pg.865]

This involves subjecting a polymer, such as PMMA, in solid, gel, partially molten or molten form to microwave heating for a time and at a temperature sufficient to decompose the polymer to produce a monomer or monomers in gaseous, liquid or solid form, without substantial decomposition of the monomer or monomers, and recovering at least one of the monomer or monomers. The monomer or monomers may then be reused for polymerisation. [Pg.39]

Fractions rejected by 1.0 KDa (C>i) and permeated through 0.5 KDa (C0 5) membranes were also subjected to TLC analysis. In Figure 3 are reported the values relevant to the various spots detected in the two samples as a function of an arbitrary polymerisation degree (DP). The good linear correlation between these parameters allows to hypothesise a difference of one monomer units between the subsequent spots [32]. Consequently, C0.5 would correspond to the monomer, Cj to an homologous series fi om the monomer to the hexamer. [Pg.444]

E Materials subject to spontaneous polymerisation (eg ethylene oxide) 50 to 75... [Pg.155]

The dimensionless model equations are programmed into the ISIM simulation program HOMPOLY, where the variables, M, I, X and TEMP are zero. The values of the dimensionless constant terms in the program are realistic values chosen for this type of polymerisation reaction. The program starts off at steady state, but can then be subjected to fractional changes in the reactor inlet conditions, Mq, Iq, Tq and F of between 2 and 5 per cent, using the ISIM interactive facility. The value of T in the program, of course, refers to dimensionless time. [Pg.369]

Over the last few years the DCA and ACA compounds have been the subject of a number of interesting chemical developments including their use as templates in polymerisation 23,24), and as media for stereospecific chemical reactions 98 100). This work has been carried out on the orthorhombic systems and is therefore outside the scope of this review. [Pg.168]

Ethylenimine , Brochure 125-521-65, Midland (Mich.), Dow Chemical Co., 1965 It is very reactive chemically and subject to aqueous auto-catalysed exothermic polymerisation, which may be violent if uncontrolled by dilution, slow addition or cooling. It is normally stored over solid caustic alkali, to minimise polymerisation catalysed by presence of carbon dioxide. [Pg.328]

One parameter which has so far been neglected in the discussion of the influence of physical conditions on the young Earth is the pressure in rock layers. This has been the subject of investigation by Ohara and co-workers from the Tohoku University in Sendai, Japan, who studied the pressure-dependence of the polymerisation of dry glycine at 423 K and pressures from 5 to 100 MPa. The experiments took between 1 and 32 days. Depending on the pressure, light to dark yellow products were obtained. At low pressures, the colour is probably due to the presence of melanoids. [Pg.137]

The introduction of metal alkyls to an MAO-activated bis(imino)pyridine iron catalyst has also been the subject of a number of studies. Both AlMe3 and AlEt3 have been added to 5a/MAO-based polymerisation catalysts leading to polyethylene displaying a bimodal distribution similar to that observed using 5a/M AO,... [Pg.131]

Prior to the development of polymerisation catalysts based on the bis(imino)pyridine framework, the bis(imino)pyridine moiety was widely incorporated into macrocycles [163, 164], As an extension of this design strategy to polymerisation applications, several groups have been attempting to incorporate sterically bulky bis(arylimino) pyridine units into macrocycles. In a similar fashion, the introduction of the bis(imino)pyridine unit into polymeric chains in which polymerisation-active metal centres are bound has been the subject of study. [Pg.138]

Solving the detailed reaction mechanisms to produce rational explanations of cationoid polymerisations and reliable values of kinetic parameters has been Peter s consistent goal for over 50 years. Unlike many people who devote their lives to a single topic, if, in order to advance the subject, some new experimental technique was required he and his group developed it over the years they developed several devices and procedures to generate more-reliable data. Peter, therefore, was a serious experimentalist as well as a careful analyser and scrutinizer of data, data of his and of others. Over the years he freely criticised not only the work of others but also his own work (as is apparent in this volume) in order to develop a more complete understanding of systems. Thus, this book reports his contributions warts and all where one paper may criticise a preceding paper. [Pg.8]

Some explanation is required why my title involves the adjective cationoid instead of the traditional cationic . As most of those familiar with the subject have known for some years, I use this term to include both the cationic polymerisations by carbenium ions and also those polymerisations in which an alkene is inserted into the strongly polarised covalent bond of an ester, the cationoid insertions I have seen no convincing reason for changing my well known opinion that these are different types of reactions, and that a clear distinction between them is heuristically useful. [Pg.11]

Finally, a warning about what this book is not my collection of papers is not a textbook or a monograph on cationoid polymerisations. My contributions to that subject, though... [Pg.15]

In the 1960s, after Kennedy and Thomas [25] had established the isomerisation polymerisation of 3-methylbutene-l, this became a popular subject. From Krentsel s group in the USSR and Aso s in Japan there came several claims to have obtained polymers of unconventional structure from various substituted styrenes by CP. They all had in common that an alleged hydride ion shift in the carbenium ion produced a propagating ion different from that which would result from the cationation of the C C of the monomer and therefore a polymer of unconventional structure the full references are in our papers. The monomers concerned are the 2-methyl-, 2-isopropyl-, 4-methyl-, 4-isopropyl-styrenes. The alleged evidence consisted of IR and proton magnetic resonance (PMR) spectra, and the hypothetical reaction scheme which the spectra were claimed to support can be exemplified thus ... [Pg.25]

This individualism also implies that different potential co-catalysts may react differently with the different MtXn. Here is not the place for a treatise on this complicated subject, but it is the occasion to describe how we established the manner in which the A1X3 initiate polymerisations in the most rigorously purified systems. [Pg.27]

The rate of polymerisation. It was found that at [isobutene] = 3.2 mole/l and [SnCl4] = 0.185 mole/l the dependence of the rate of polymerisation on the concentration of water varied with the degree of purification of the isobutene and of the ethyl chloride. When both had been subjected to two Podbielniak distillations (the usual procedure for most of the experiments) the rate varied rectilinearly with [H20], but when both monomer and solvent had been subjected to six such distillations, the rate followed the curve shown in Figure 8. Under these conditions the rate at zero added water corresponds to a concentration of the residual water of 5 x 10 4 mole/l. The authors concluded that the reaction would not go without a co-catalyst such as water. [Pg.80]


See other pages where POLYMERISATION Subject is mentioned: [Pg.30]    [Pg.45]    [Pg.30]    [Pg.45]    [Pg.347]    [Pg.169]    [Pg.84]    [Pg.164]    [Pg.393]    [Pg.304]    [Pg.47]    [Pg.208]    [Pg.438]    [Pg.869]    [Pg.983]    [Pg.102]    [Pg.15]    [Pg.165]    [Pg.113]    [Pg.441]    [Pg.34]    [Pg.127]    [Pg.133]    [Pg.376]    [Pg.8]    [Pg.9]    [Pg.14]    [Pg.27]    [Pg.29]    [Pg.32]   


SEARCH



Cationic polymerisation Subject

GRAFT POLYMERISATION Subject

POLYMERISATION INITIATOR Subject

© 2024 chempedia.info