Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerisation Polypropylene

After the discovery of isotactic polymerisation of propylene using shconocene catalysts, stmcturaHy analogous hafnium catalysts produced from hafnium tetrachloride [13499-05-3] were found to produce high yields of high molecular weight polypropylene (55), but not enough to lead to commercial development. [Pg.444]

Polypropylene polymers are typically modified with ethylene to obtain desirable properties for specific applications. Specifically, ethylene—propylene mbbers are introduced as a discrete phase in heterophasic copolymers to improve toughness and low temperature impact resistance (see Elastomers, ETHYLENE-PROPYLENE rubber). This is done by sequential polymerisation of homopolymer polypropylene and ethylene—propylene mbber in a multistage reactor process or by the extmsion compounding of ethylene—propylene mbber with a homopolymer. Addition of high density polyethylene, by polymerisation or compounding, is sometimes used to reduce stress whitening. In all cases, a superior balance of properties is obtained when the sise of the discrete mbber phase is approximately one micrometer. Examples of these polymers and their properties are shown in Table 2. Mineral fillers, such as talc or calcium carbonate, can be added to polypropylene to increase stiffness and high temperature properties, as shown in Table 3. [Pg.409]

S. Van der Ven, Polypropylene and Other Polyolefins Polymerisation and Characterisation, Elsevier Science PubHsliers, B. V., Amsterdam, the Netherlands, 1990. [Pg.424]

Polyolefins. The most common polyolefin used to prepare composites is polypropylene [9003-07-0] a commodity polymer that has been in commercial production for almost 40 years following its controlled polymerisation by Natta in 1954 (5). Natta used a Ziegler catalyst (6) consisting of titanium tetrachloride and an aluminum alkyl to produce isotactic polypropylene directly from propylene ... [Pg.36]

As a result of the work of Ziegler in Germany, Natta in Italy and Pease and Roedel in the United States, the process of co-ordination polymerisation, a process related to ionic polymerisation, became of significance in the late 1950s. This process is today used in the commercial manufacture of polypropylene and polyethylene and has also been used in the laboratory for the manufacture of many novel polymers. In principle the catalyst system used governs the way in which a monomer and a growing chain approach each other and because of this it is possible to produce stereoregular polymers. [Pg.37]

Following the considerable commercial success of Ziegler-Natta polymerisation systems which made possible high density polyethylene, polypropylene, ethylene-propylene rubbers and a number of speciality materials, a considerable... [Pg.37]

Another technical development is that of high impact isotactic polypropylene in which rubber droplets are produced in situ during the polymerisation stage. After propylene homopolymerisation ethylene is added to the reacting mass in a... [Pg.249]

The narrow molecular weight distribution means that the melts are more Newtonian (see Section 8.2.5) and therefore have a higher melt viscosity at high shear rates than a more pseudoplastic material of similar molecular dimensions. In turn this may require more powerful extruders. They are also more subject to melt irregularities such as sharkskin and melt fracture. This is one of the factors that has led to current interest in metallocene-polymerised polypropylenes with a bimodal molecular weight distribution. [Pg.259]

Synthetic large molecules are made by joining together thousands of small molecular units known as monomers. The process of joining the molecules is called polymerisation and the number of these units in the long molecule is known as the degree of polymerisation. The names of many polymers consist of the name of the monomer with the suffix poly-. For example, the polymers polypropylene and polystryene are produced from propylene and styrene respectively. Names, and symbols for common polymers are given in Appendix F. [Pg.2]

The low-density polyethylene and polypropylene cases. In the course of the radical chain polymerisation of ethylene two kinds of transfer on the polymer play a major role, giving rise to LCB or SCB. These are illustrated in Figure 21. [Pg.39]

With the exception of LDPE, polyolefins like other polyethylenes and polypropylene, which represent the largest amount of vinyl-type polymers produced in the world, are neither synthesized by radical nor by classical ionic polymerisation processes. Different types of polymerisation catalysts are in use for these purposes. The Cr-based Phillips catalyst, Ziegler-Natta type catalysts, metallocene or other more recently discovered catalysts, including late transition metal catalysts, are all characterized by their propagation step where the olefin monomer inserts into a carbon-transition metal link. ... [Pg.45]

It has also to be emphasised that polymers synthesized by chain polymerisation can undergo random degradation (as polypropylene for instance), while certain polymers synthesized by step polymerisation can depolymerise (e.g., polyamide 6). [Pg.60]

Polymerised propylene, a polyolefin plastic with properties similar to those of polyethylene. Polypropylene Glycol (PPG)... [Pg.49]

Polymers such as PVC, polyethylene, polypropylene or polystyrene are synthesised by using a process known as polymerisation. [Pg.4]

Examples of important commercial products obtained by free radical polymerisation of substituted ethenes are polypropene (polypropylene). Polyphenylethene (polystyrene), poly-1 chloroethene (polyvinyl chloride) and poly 1-methoxy carbonyl-1 methylethene (polymethalmethacrylate). [Pg.36]

Another, independent development involves vanadium catalysed propene polymerisation leading to syndiotactic polypropylene [20], see 10.2.1. [Pg.199]

The determination of the microstructure of vinyl polymers is not merely a characterisation tool. Each polymer molecule is unique, and each polymer chain is a record of the history of its formation, including mis-insertions, rearrangements, the incorporation of co-monomers, and the mode of its termination. NMR analysis of polymers can therefore be used to provide detailed mechanistic and kinetic information. This approach has been applied particularly successfully to the microstructure, i. e. the sequence distribution of monomer insertions, of polypropylene, giving rise to a wealth of studies far too numerous to cover here. Progress in this area has recently been summarised in two excellent and very comprehensive review articles [122, 123[. Here we will cover only the most fundamental aspects of stereoselective polymerisations. [Pg.345]

A foamable isotactic polypropylene homopolymer is obtained by metallocene catalysis and has a molecular weight distribution and density, which fall within broad ranges. It may be prepared in a multiple stage polymerisation process nsing the same metallocene component in at least two stages. [Pg.48]

The support membrane is soaked in the prepolymerisation mixture consisting of functional monomer, crosslinker and template. An MIP layer is formed on or in the porous support by in situ photo or thermal polymerisation of the monomer mixture. This was first demonstrated by Haupt and coworkers on an amino acid specific MIP synthesised in the pores of a polypropylene membrane. Composite membranes... [Pg.73]

Plant cleaning incidents, 330 Platinum compounds, 330 Platinum group metals, 331 Poly(aminium) perchlorates, 331 Polyazacaged metal perchlorates, 332 Polycondensation reaction incidents, 332 Poly(dimercuryimmonium) compounds, 332 Poly(dimethylsilyl)chromate, 333 Polymeric peroxyacids, 333 Polymerisation incidents, 333 Polynitroalkyl compounds, 336 Polynitroaryl compounds, 337 Polynitroazopyridines, 340 Polyperoxides, 341 Polypropylene powder, 342 Precious metal derivatives, 342 Preparative hazards, 342... [Pg.2640]

Oxidative degradation of polyethylene (PE) and polypropylene (PP) can occur at all stages of their lifecycle (polymerisation, storage, processing, fabrication and in-service). The auto-oxidation process of polyolefins is best described by the classical free-radical-initiated chain reaction outlined in Scheme 1 [1]. Impurities initially present in the polymers during polymerisation or melt processing, exert profound effects on the behaviour of the final polymer article in service. [Pg.122]

Alkylaluminumchlorides are widely used as catalysts in the production of polyethylene and low-pressure polypropylene, as well as in the polymerisation of dienes and a-olefines. Organoaluminum compounds are as a rule highly reactive substances. [Pg.385]

At the same time, syndiotactic polypropylene was also isolated by Natta et al. and characterised [145]. Syndiotactic polypropylene which was obtained by low-temperature polymerisation using soluble vanadium-based catalysts [146] could not be, however, commercialised, although it had a blend of interesting usable properties. [Pg.29]

The Ziegler-Natta catalysts have acquired practical importance particularly as heterogeneous systems, mostly owing to the commercial production of linear high- and low-density polyethylenes and isotactic polypropylene. Elastomers based on ethylene-propylene copolymers (with the use of vanadium-based catalysts) as well as 1,4-cz s-and 1,4-tran.y-poly(l, 3-butadiene) and polyisoprene are also produced. These catalysts are extremely versatile and can be used in many other polymerisations of various hydrocarbon monomers, leading very often to polymers of different stereoregularity. In 1963, both Ziegler and Natta were awarded the Nobel Prize in chemistry. [Pg.29]

The model with different end-groups is not realistic in all cases isotactic polypropylene and syndiotactic polypropylene are chiral, or more precisely, their structure is cryptochiral. This model is to be chosen when examining oligomers, and especially when studying the polymerisation mechanism where the structure of the reactive chain end is of extreme importance [16]. [Pg.49]

It should be mentioned that many of the requirements necessary for the economic production of polyethylene and polypropylene have been achieved. However, catalysts of greater activity and of greater selectivity in the production of polymers and copolymers can be anticipated. This is of prime concern to alkene polymerisation processes in the presence of single-site metallocene catalysts. Such catalysts, undoubtedly of great scientific and commercial importance, have been developed on a large scale within recent years [29,30],... [Pg.56]


See other pages where Polymerisation Polypropylene is mentioned: [Pg.371]    [Pg.312]    [Pg.407]    [Pg.8]    [Pg.251]    [Pg.418]    [Pg.65]    [Pg.24]    [Pg.4]    [Pg.371]    [Pg.193]    [Pg.221]    [Pg.311]    [Pg.65]    [Pg.290]    [Pg.74]    [Pg.28]    [Pg.28]    [Pg.29]    [Pg.55]    [Pg.57]   


SEARCH



© 2024 chempedia.info