Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric materials, limitations

Tribasic Lead Maleate A salt of maleic acid, highly effective as heat stabilizer for polymeric materials. Limited to use in applications where toxicity and lack of clarity can be tolerated. [Pg.213]

In the last few decades, polymeric materials have found many applications and govern a major part of our day-to-day life. The polymeric materials are strong, lightweight, and easily processable with cost-effective techniques [1]. However, the properties of the pure polymeric materials limit their application in diversified fields. The introduction of filler materials into the polymer matrix generates properties superior to those of individual components. The combination forms a single system the polymer nanocomposites exhibit improved strength, stiffness and dimensional stability with adequate physical properties compared to pure ploymer. These nanocomposites can be of different types such as ceramic-based nanocomposites, fiber-reinforced nanocomposites, polymer-clay nanocomposites, etc. [Pg.196]

Perfluoropolymers bum, but do not continue to bum when the flame is removed. All perfluorinated fluoropolymers pass a UL 83 vertical flame test and are classified 94 V-0 according to Underwriters Laboratory (UL) in their burning test classification for polymeric materials. Limiting oxygen index (LOI) by ASTM D2863 is 95% or higher for PTFE, PFA, FEP, and PCTFE. Partially fluorinated fluoropolymers are more flame resistant than other thermoplastics but not quite as resistant as the perfluorinated fluoropolymers, as evidenced by their lower EOI values. PVDF, ETFE, and ECTFE meet UE 94 V-0. Table 13.48 lists the EOI of various fluoropolymers. [Pg.443]

The limiting oxygen index of Tefzel as measured by the candle test (ASTM D2863) is 30%. Tefzel is rated 94 V-0 by Underwriters Laboratories, Inc., in their burning test classification for polymeric materials. As a fuel, it has a comparatively low rating. Its heat of combustion is 13.7 MJ/kg (32,500 kcal/kg) compared to 14.9 MJ /kg (35,000 kcal/kg) for poly(vinyHdene fluoride) and 46.5 MJ /kg (110,000 kcal/kg) for polyethylene. [Pg.370]

Ja.cketingMa.teria.ls. Besides the metallic protective coverings (based on aluminum, copper and copper alloys, lead, steel, and zinc), the most popular jacketing materials are based on polymeric materials that can be either thermoplastic (with limited high temperature use) or thermosetting. [Pg.329]

Commercially, anionic polymerization is limited to three monomers styrene, butadiene, and isoprene [78-79-5], therefore only two useful A—B—A block copolymers, S—B—S and S—I—S, can be produced direcdy. In both cases, the elastomer segments contain double bonds which are reactive and limit the stabhity of the product. To improve stabhity, the polybutadiene mid-segment can be polymerized as a random mixture of two stmctural forms, the 1,4 and 1,2 isomers, by addition of an inert polar material to the polymerization solvent ethers and amines have been suggested for this purpose (46). Upon hydrogenation, these isomers give a copolymer of ethylene and butylene. [Pg.15]

APAOs has limited their utility in a number of applications. The broad MWD produces poor machining and spraying, and the low cohesive strength causes bond failures at temperatures well below the softening point when minimal stress is applied. To address these deficiencies, metallocene-polymerized materials have been developed [17,18]. These materials have much narrower MWDs than Ziegler-Natta polymerized materials and a more uniform comonomer distribution (see Table 3). Materials available commercially to date are better suited to compete with conventional EVA and EnBA polymers, against which their potential benefits have yet to be realized in practice. [Pg.717]

The materizils in current use have limited resistance to the broad ranges of commonly spilled chemicetl solvents. In fact, no one suit material is known to resist attack by all chemicals. Rubber or polymeric materials eire all permeable to some degree but for some chemicals, there is no acceptable gairment available to provide adequate protection for the wearer. Consequently chemiczil response teams must rely on an inventory of suits constructed of different materials to provide adequate personnel protection. [Pg.6]

Polyolefins represent one of the main types of synthetic polymeric materials. World production of polyolefins in 1980 amounted to 23 million tons, and since then the tendency to further growth has been prevailing [1]. The grave defect of polyolefins is low thermal and heat resistance, which is detrimental to the processing efficiency and limits their useability (Table 1). [Pg.81]

A large range of man-made polymeric materials is available, from polyethylene, which is attacked by most organic chemicals, to fluorinated products such as polytetrafluoro-ethylene and polyethyletherketones, which have exceptional resistance to virtually all chemicals. All polymers have their own adhesive, welding and fabrication limitations which must be taken into account in the design of the coated item. These materials can also be used in solid form. [Pg.907]

It is important to note that, for important sub-cases of case /), which will be discussed in more detail in Sect. 2.4, there is a low extent of disorder entropy effects, if any, are small and changes of the lattice dimensions are absent or small. These particular disordered forms are not considered as mesomorphic. In such cases, the limiting models which are fully ordered or fully disordered may be designated respectively as ordered or disordered crystalline modifications, if their consideration is useful for the structural description of a polymeric material. Note... [Pg.186]

When dealing with polymeric materials these early techniques were limited by the fact that only protons could be readily observed in the available fields. The small chemical shifts and the large dipole interactions made work with these systems very difficult. However, the development of the routine Fourier transform method of observation, especially when observing C-13 NMR, significantly changed the situation. [Pg.2]

The changes in properties observed on aging of different elastomers and their vulcanizates, and of many other polymeric materials, are well known. Antiozonants and antioxidants are employed to limit these changes. However, the most effective antioxidant for one material may be ineffective. [Pg.464]

Alternative approaches consist in heat extraction by means of thermal analysis, thermal volatilisation and (laser) desorption techniques, or pyrolysis. In most cases mass spectrometric detection modes are used. Early MS work has focused on thermal desorption of the additives from the bulk polymer, followed by electron impact ionisation (El) [98,100], Cl [100,107] and field ionisation (FI) [100]. These methods are limited in that the polymer additives must be both stable and volatile at the higher temperatures, which is not always the case since many additives are thermally labile. More recently, soft ionisation methods have been applied to the analysis of additives from bulk polymeric material. These ionisation methods include FAB [100] and LD [97,108], which may provide qualitative information with minimal sample pretreatment. A comparison with FAB [97] has shown that LD Fourier transform ion cyclotron resonance (LD-FTTCR) is superior for polymer additive identification by giving less molecular ion fragmentation. While PyGC-MS is a much-used tool for the analysis of rubber compounds (both for the characterisation of the polymer and additives), as shown in Section 2.2, its usefulness for the in situ in-polymer additive analysis is equally acknowledged. [Pg.46]


See other pages where Polymeric materials, limitations is mentioned: [Pg.115]    [Pg.115]    [Pg.52]    [Pg.314]    [Pg.154]    [Pg.400]    [Pg.334]    [Pg.378]    [Pg.233]    [Pg.473]    [Pg.213]    [Pg.82]    [Pg.510]    [Pg.323]    [Pg.134]    [Pg.137]    [Pg.306]    [Pg.399]    [Pg.159]    [Pg.11]    [Pg.2]    [Pg.375]    [Pg.205]    [Pg.188]    [Pg.55]    [Pg.1]    [Pg.29]    [Pg.166]    [Pg.1]    [Pg.216]    [Pg.274]    [Pg.210]    [Pg.910]    [Pg.765]    [Pg.294]    [Pg.81]    [Pg.84]   
See also in sourсe #XX -- [ Pg.2 ]




SEARCH



Materials polymerization

Polymeric materials

Polymerized materials

© 2024 chempedia.info