Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymeric materials, properties

Glass transition temperature is one of the most important parameters used to determine the application scope of a polymeric material. Properties of PVDF such as modulus, thermal expansion coefficient, dielectric constant and loss, heat capacity, refractive index, and hardness change drastically helow and above the glass transition temperature. A compatible polymer blend has properties intermediate between those of its constituents. The change of glass transition temperature has been a widely used method to study the compatibility of polymer blends. Normally, the glass transition temperatme of a compatible polymer blend can be predicted by the Gordon-Taylor relation ... [Pg.122]

Aseeva, R. M., Ruban, L. V., Zaikov, G. E., in Flame Retardant Polymeric Materials Property Estimation Problems. Conference of October 19-21, 1981. Report Theses, p. 19, Tallin Institute of Chemistry, AN ESSR, 1981 Plastmassy (1983), p. 34... [Pg.228]

Since the development of soft ionization mass spectrometry [9], which allows to analyze large organic molecules without fragmentation, various polymer architectures were characterized by mass spectrometry. In principle, different parameters tailoring polymeric material properties such as molar mass (MJ, architecture (linear, branched, cyclic, star, etc.), monomer composition, degree of functionalization, end groups, and the presence of impurities or additives can be evaluated by mass spectrometry, however, with some limitations. The determination of molar masses of polymers by mass spectrometry is only possible for reasonable low dispersity polymeric architectures, which can be achieved by using controllable polymerization techniques such as anionic or... [Pg.129]

As it has been noted above, at present it is generally acknowledged [2], that macromolecular formations and polymer systems are always natural nanostructural systems in virtue of their structure features. In this connection the question of using this feature for polymeric materials properties and operating characteristics improvement arises. It is obvious enough that for structure-properties relationships receiving the quantitative nanostructural model of the indicated materials is necessary. It is also obvious that if the dependence of specific property on material structure state is unequivocal, then there will be quite sufficient modes to achieve this state. The cluster model of such state [3-5] is the most suitable for polymers amorphous state structure description. It has been shown, that this model basic structural element (cluster) is nanoparticles (nanocluster) (see Section 15.1). The cluster model was used successfully for cross-linked polymers structure and properties description [61]. Therefore, the authors of Ref [62] fulfilled nanostmetures regulation modes and of the latter influence on rarely cross-linked epoxy polymer properties study within the frameworks of the indicated model. [Pg.337]

Uses Air entrainer which provides heat and sound insulation, wt. reduction, volume building for plastics and other syn. polymeric materials Properties Liq. [Pg.1188]

The Computation of Polymeric Material s Viscoelastic Properties by Dynamic Indentation Method. [Pg.239]

The paper discusses the application of dynamic indentation method and apparatus for the evaluation of viscoelastic properties of polymeric materials. The three-element model of viscoelastic material has been used to calculate the rigidity and the viscosity. Using a measurements of the indentation as a function of a current velocity change on impact with the material under test, the contact force and the displacement diagrams as a function of time are plotted. Experimental results of the testing of polyvinyl chloride cable coating by dynamic indentation method and data of the static tensile test are presented. [Pg.239]

The radiation and temperature dependent mechanical properties of viscoelastic materials (modulus and loss) are of great interest throughout the plastics, polymer, and rubber from initial design to routine production. There are a number of laboratory research instruments are available to determine these properties. All these hardness tests conducted on polymeric materials involve the penetration of the sample under consideration by loaded spheres or other geometric shapes [1]. Most of these tests are to some extent arbitrary because the penetration of an indenter into viscoelastic material increases with time. For example, standard durometer test (the "Shore A") is widely used to measure the static "hardness" or resistance to indentation. However, it does not measure basic material properties, and its results depend on the specimen geometry (it is difficult to make available the identity of the initial position of the devices on cylinder or spherical surfaces while measuring) and test conditions, and some arbitrary time must be selected to compare different materials. [Pg.239]

The complexity of polymeric systems make tire development of an analytical model to predict tlieir stmctural and dynamical properties difficult. Therefore, numerical computer simulations of polymers are widely used to bridge tire gap between tire tlieoretical concepts and the experimental results. Computer simulations can also help tire prediction of material properties and provide detailed insights into tire behaviour of polymer systems. A simulation is based on two elements a more or less detailed model of tire polymer and a related force field which allows tire calculation of tire energy and tire motion of tire system using molecular mechanisms, molecular dynamics, or Monte Carlo teclmiques 1631. [Pg.2537]

The various elastic and viscoelastic phenomena we discuss in this chapter will be developed in stages. We begin with the simplest the case of a sample that displays a purely elastic response when deformed by simple elongation. On the basis of Hooke s law, we expect that the force of deformation—the stress—and the distortion that results-the strain-will be directly proportional, at least for small deformations. In addition, the energy spent to produce the deformation is recoverable The material snaps back when the force is released. We are interested in the molecular origin of this property for polymeric materials but, before we can get to that, we need to define the variables more quantitatively. [Pg.134]

In the last three chapters we have examined the mechanical properties of bulk polymers. Although the structure of individual molecules has not been our primary concern, we have sought to understand the influence of molecular properties on the mechanical behavior of polymeric materials. We have seen, for example, how the viscosity of a liquid polymer depends on the substituents along the chain backbone, how the elasticity depends on crosslinking, and how the crystallinity depends on the stereoregularity of the polymer. In the preceding chapters we took the existence of these polymers for granted and focused attention on their bulk behavior. In the next three chapters these priorities are reversed Our main concern is some of the reactions which produce polymers and the structures of the products formed. [Pg.264]

We noted above that the presence of monomer with a functionality greater than 2 results in branched polymer chains. This in turn produces a three-dimensional network of polymer under certain circumstances. The solubility and mechanical behavior of such materials depend critically on whether the extent of polymerization is above or below the threshold for the formation of this network. The threshold is described as the gel point, since the reaction mixture sets up or gels at this point. We have previously introduced the term thermosetting to describe these cross-linked polymeric materials. Because their mechanical properties are largely unaffected by temperature variations-in contrast to thermoplastic materials which become more fluid on heating-step-growth polymers that exceed the gel point are widely used as engineering materials. [Pg.314]

Polymeric materials are unique owing to the presence of a glass-transition temperature. At the glass-transition temperatures, the specific volume of the material and its rate of change changes, thus, affecting a multitude of physical properties. Numerous types of devices could be developed based on this type of stimuli—response behavior however, this technology is beyond the scope of this article. [Pg.250]

Sonochemistry is also proving to have important applications with polymeric materials. Substantial work has been accomplished in the sonochemical initiation of polymerisation and in the modification of polymers after synthesis (3,5). The use of sonolysis to create radicals which function as radical initiators has been well explored. Similarly the use of sonochemicaHy prepared radicals and other reactive species to modify the surface properties of polymers is being developed, particularly by G. Price. Other effects of ultrasound on long chain polymers tend to be mechanical cleavage, which produces relatively uniform size distributions of shorter chain lengths. [Pg.263]

Table 3. Adhesive Bond Properties of 2-Cyanoacrylic Esters with Metals and Various Polymeric Materials... Table 3. Adhesive Bond Properties of 2-Cyanoacrylic Esters with Metals and Various Polymeric Materials...
Alkyd resins are produced by reaction of a polybasic acid, such as phthaUc or maleic anhydride, with a polyhydric alcohol, such as glycerol, pentaerythritol, or glycol, in the presence of an oil or fatty acid. The resulting polymeric material can be further modified with other polymers and chemicals such as acryhcs, siUcones, and natural oils. On account of the broad selection of various polybasic acids, polyhydric alcohols, oils and fatty acids, and other modifying ingredients, many different types of alkyd resins can be produced that have a wide range of coating properties (see Alkyd resins). [Pg.541]

Although numerous mud additives aid in obtaining the desired drilling fluid properties, water-based muds have three basic components water, reactive soHds, and inert soHds. The water forming the continuous phase may be fresh water, seawater, or salt water. The reactive soHds are composed of commercial clays, incorporated hydratable clays and shales from drilled formations, and polymeric materials, which may be suspended or dissolved in the water phase. SoHds, such as barite and hematite, are chemically inactive in most mud systems. Oil and synthetic muds contain, in addition, an organic Hquid as the continuous phase plus water as the discontinuous phase. [Pg.177]

Plastics testing encompasses the entire range of polymeric material characterizations, from chemical stmcture to material response to environmental effects. Whether the analysis or property testing is for quaUty control of a specific lot of plastic or for the determination of the material s response to long-term stress, a variety of test techniques is available for the researcher. [Pg.148]

Because of its physical properties, polypyrrole has been cited as a unique building block for intelligent polymeric materials, ie, it has characteristics which make it capable of sensing, information processing, and response actuation (48). [Pg.359]

Butadiene copolymers are mainly prepared to yield mbbers (see Styrene-butadiene rubber). Many commercially significant latex paints are based on styrene—butadiene copolymers (see Coatings Paint). In latex paint the weight ratio S B is usually 60 40 with high conversion. Most of the block copolymers prepared by anionic catalysts, eg, butyUithium, are also elastomers. However, some of these block copolymers are thermoplastic mbbers, which behave like cross-linked mbbers at room temperature but show regular thermoplastic flow at elevated temperatures (45,46). Diblock (styrene—butadiene (SB)) and triblock (styrene—butadiene—styrene (SBS)) copolymers are commercially available. Typically, they are blended with PS to achieve a desirable property, eg, improved clarity/flexibiHty (see Polymerblends) (46). These block copolymers represent a class of new and interesting polymeric materials (47,48). Of particular interest are their morphologies (49—52), solution properties (53,54), and mechanical behavior (55,56). [Pg.507]

Corrosion Inhibition. Another important property of antifreeze solutions is the corrosion protection they provide. Most cooling systems contain varied materials of constmction including multiple metals, elastomeric materials, and rigid polymeric materials. The antifreeze chosen must contain corrosion inhibitors that are compatible with all the materials in a system. Additionally, the fluid and its corrosion inhibitor package must be suitable for the operating temperatures and conditions of the system. [Pg.188]

Nearly all polymeric materials require the addition of antioxidants to retain physical properties and to ensure an adequate service life. The selection of an antioxidant or system of antioxidants is dependent upon the polymer and the anticipated end use. A product that will not be exposed to the elements for a long period of time such as polyethylene grocery bags does not need a long term stabilizer polyethylenes used to iasulate communication cable must be stabilized for many years of service. [Pg.228]


See other pages where Polymeric materials, properties is mentioned: [Pg.81]    [Pg.309]    [Pg.309]    [Pg.343]    [Pg.454]    [Pg.81]    [Pg.309]    [Pg.309]    [Pg.343]    [Pg.454]    [Pg.184]    [Pg.135]    [Pg.135]    [Pg.52]    [Pg.209]    [Pg.197]    [Pg.20]    [Pg.272]    [Pg.312]    [Pg.384]    [Pg.298]    [Pg.147]    [Pg.219]    [Pg.221]    [Pg.230]    [Pg.233]    [Pg.472]    [Pg.396]    [Pg.21]    [Pg.454]   
See also in sourсe #XX -- [ Pg.177 ]




SEARCH



Dielectric properties, polymeric materials

In Nonlinear Optical Properties of Organic and Polymeric Materials Williams

In Nonlinear Optical Properties of Organic and Polymeric Materials Williams ACS Symposium Series American Chemical Society: Washington

Materials polymerization

Mechanical properties of polymeric materials

POLYMERIC PROPERTY

Physical properties of polymeric materials

Physicochemical Properties of Polymeric Materials

Polymeric material flexural properties

Polymeric materials

Polymerization properties

Polymerized materials

Properties of Polymeric Materials

Rheological Properties of Polymeric Materials

Self-reporting Polymeric Materials with Mechanochromic Properties

Thermal properties, polymeric materials

Thermal properties, polymeric materials differential scanning calorimetry

Thermal properties, polymeric materials diffusivity

Thermal properties, polymeric materials overview

Thermal properties, polymeric materials thermomechanical analysis

Waveguide polymeric materials, property

© 2024 chempedia.info