Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Thermal properties, polymeric materials thermomechanical analysis

Thermal and thermomechanical analyses44 are very important for determining die upper and lower usage temperature of polymeric materials as well as showing how they behave between diose temperature extremes. An especially useful thermal technique for polyurethanes is dynamic mechanical analysis (DMA).45 Uiis is used to study dynamic viscoelastic properties and measures die ability to... [Pg.241]

One of the more recently exploited forms of thermal analysis is the group of techniques known as thermomechanical analysis (TMA). These techniques are based on the measurement of mechanical properties such as expansion, contraction, extension or penetration of materials as a function of temperature. TMA curves obtained in this way are characteristic of the sample. The technique has obvious practical value in the study and assessment of the mechanical properties of materials. Measurements over the temperature range - 100°C to 1000°C may be made. Figure 11.19 shows a study of a polymeric material based upon linear expansion measurements. [Pg.494]

Table 2.5 summarises the main applications of thermal analysis and combined techniques for polymeric materials. Of these, thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA) provide only physical properties of a very specific nature and yield very little chemical information. DMA was used to study the interaction of fillers with rubber host systems [40]. Thermomechanical analysis (TMA) measures the dimensional changes of a sample as a function of temperature. Relevant applications are reported for on-line TMA-MS cfr. Chp. 2.1.5) uTMA offers opportunities cfr. Chp. 2.1.6.1). The primary TA techniques for certifying product quality are DSC and TG (Table 2.6). Specific tests for which these techniques are used in quality testing vary depending upon the type of material and industry. Applications of modulated temperature programme are (i) study of kinetics (ii) AC calorimetry (Hi) separation of sample responses (in conjunction with deconvolution algorithms) and (iv) microthermal analysis. Table 2.5 summarises the main applications of thermal analysis and combined techniques for polymeric materials. Of these, thermomechanical analysis (TMA) and dynamic mechanical analysis (DMA) provide only physical properties of a very specific nature and yield very little chemical information. DMA was used to study the interaction of fillers with rubber host systems [40]. Thermomechanical analysis (TMA) measures the dimensional changes of a sample as a function of temperature. Relevant applications are reported for on-line TMA-MS cfr. Chp. 2.1.5) uTMA offers opportunities cfr. Chp. 2.1.6.1). The primary TA techniques for certifying product quality are DSC and TG (Table 2.6). Specific tests for which these techniques are used in quality testing vary depending upon the type of material and industry. Applications of modulated temperature programme are (i) study of kinetics (ii) AC calorimetry (Hi) separation of sample responses (in conjunction with deconvolution algorithms) and (iv) microthermal analysis.

See other pages where Thermal properties, polymeric materials thermomechanical analysis is mentioned: [Pg.174]    [Pg.417]    [Pg.114]    [Pg.140]    [Pg.320]    [Pg.409]    [Pg.331]   
See also in sourсe #XX -- [ Pg.2 , Pg.1173 ]




SEARCH



Materials polymerization

POLYMERIC PROPERTY

Polymeric material properties

Polymeric materials

Polymeric materials, thermal

Polymerization properties

Polymerized materials

Thermal material properties

Thermal materials

Thermal properties thermomechanical analysis

Thermal properties, polymeric

Thermal properties, polymeric materials

Thermomechanical analysis

Thermomechanical properties

Thermomechanics

© 2024 chempedia.info