Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Transition metal complexes, polymers

Stable transition-metal complexes may act as homogenous catalysts in alkene polymerization. The mechanism of so-called Ziegler-Natta catalysis involves a cationic metallocene (typically zirconocene) alkyl complex. An alkene coordinates to the complex and then inserts into the metal alkyl bond. This leads to a new metallocei e in which the polymer is extended by two carbons, i.e. [Pg.251]

Ionic liquids have already been demonstrated to be effective membrane materials for gas separation when supported within a porous polymer support. However, supported ionic liquid membranes offer another versatile approach by which to perform two-phase catalysis. This technology combines some of the advantages of the ionic liquid as a catalyst solvent with the ruggedness of the ionic liquid-polymer gels. Transition metal complexes based on palladium or rhodium have been incorporated into gas-permeable polymer gels composed of [BMIM][PFg] and poly(vinyli-dene fluoride)-hexafluoropropylene copolymer and have been used to investigate the hydrogenation of propene [21]. [Pg.266]

Inhibitors (Section 5.3), including transition metal complexes and nilroxides, may be used to prepare mono-end-functional polymers. If an appropriate initiator is employed, di-end-functional polymers are also possible. [Pg.381]

A great variety of suitable polymers is accessible by polymerization of vinylic monomers, or by reaction of alcohols or amines with functionalized polymers such as chloromethylat polystyrene or methacryloylchloride. The functionality in the polymer may also a ligand which can bind transition metal complexes. Examples are poly-4-vinylpyridine and triphenylphosphine modified polymers. In all cases of reactively functionalized polymers, the loading with redox active species may also occur after film formation on the electrode surface but it was recognized that such a procedure may lead to inhomogeneous distribution of redox centers in the film... [Pg.53]

COlfen H (2007) Bio-inspired Mineralization Using Hydrophilic Polymers. 271 1-77 Collin J-P, Heitz V, Sauvage J-P (2005) Transition-Metal-Complexed Catenanes and Rotax-anes in Motion Towards Molecular Machines. 262 29-62 Collins BE, Wright AT, Anslyn EV (2007) Combining Molecular Recognition, Optical Detection, and Chemometric Analysis. 277 181-218 Collyer SD, see Davis F (2005) 255 97-124 Commeyras A, see Pascal R (2005) 259 69-122 Coquerel G (2007) Preferential Crystallization. 269 1-51 Correia JDG, see Santos I (2005) 252 45-84 Costanzo G, see Saladino R (2005) 259 29-68 Cotarca L, see Zonta C (2007) 275 131-161 Credi A, see Balzani V (2005) 262 1-27 Crestini C, see Saladino R (2005) 259 29-68... [Pg.257]

Silene-transition metal complexes were proposed by Pannell121 for some iron and tungsten systems, and such species were observed spectroscopically by Wrighton.122,123 Thus intermediates such as 33 have been proposed in the preparation of carbosilane polymers from hydrosilanes,124 both as intermediates in the isotope scrambling observed to occur in similar ruthenium hydride systems125 126 and in the 5N2 addition of alkyllithium species to chlorovinylsilanes.47... [Pg.86]

A chiral diphosphine ligand was bound to silica via carbamate links and was used for enantioselective hydrogenation.178 The activity of the neutral catalyst decreased when the loading was increased. It clearly indicates the formation of catalytically inactive chlorine-bridged dimers. At the same time, the cationic diphosphine-Rh catalysts had no tendency to interact with each other (site isolation).179 New cross-linked chiral transition-metal-complexing polymers were used for the chemo- and enantioselective epoxidation of olefins.180... [Pg.261]

KEY TERMS transition metal complex ion copolymers cross-linked polymers... [Pg.125]

Summary Catalytic crosslinking processes of organosilicon preceramic polymers using transition metal complexes as well as stoichiometric reactions between such polymers and transition metal complexes and powders that lead to new ceramic phases are reviewed. [Pg.269]

Other organosilicon polymer precursors for ceramics have either been prepared or improved by means of transition metal complex-catalyzed chemistry. For instance, the Nicalon silicon carbide-based ceramic fibers are fabricated from a polycarbosilane that is produced by thermal rearrangement of poly(dimethylsilylene) [18]. The CH3(H)SiCH2 group is the major constituent of this polycarbosilane. [Pg.272]

Bacon J.R., Demas J.N., Determination of oxygen concentrations by luminescence quenching of a polymer-immobilized transition-metal complex, Anal. Chem. 1987 59 2780. [Pg.41]

The polymerization of olefins and di-olefins is one of the most important targets in polymer science. This review article describes recent progress in this field and deals with organo-transition metal complexes as polymerization catalysts. Recent developments in organometallic chemistry have prompted us to find a precise description of the mechanism of propagation, chain transfer, and termination steps in the homogeneously metal-assisted polymerization of olefins and diolefins. Thus, this development provides an idea for designing any catalyst systems that are of interest in industry. [Pg.3]

An alternative strategy to obtain silica immobilised catalysts, pioneered by Panster [23], is via the polycondensation or co-condensation of ligand functionalised alkoxysilanes. This co-condensation, later also referred to as the sol-gel process [24], appeared to be a very mild technique to immobilise catalysts and is also used for enzyme immobilisation. Several novel functional polymeric materials have been reported that enable transition metal complexation. 3-Chloropropyltrialkoxysilanes were converted into functionalised propyltrialkoxysilanes such as diphenylphosphine propyltrialkoxysilane. These compounds can be used to prepare surface modified inorganic materials. Two different routes towards these functional polymers can be envisioned (Figure 3.4). One can first prepare the metal complex and then proceed with the co-condensation reaction (route I), or one can prepare the metal complex after the... [Pg.44]

There have also been several papers [61-63] on the importance of carefully establishing the reaction mechanism when attempting the copolymerization of olefins with polar monomers since many transition metal complexes can spawn active free radical species, especially in the presence of traces of moisture. The minimum controls that need to be carried out are to run the copolymerization in the presence of various radical traps (but this is not always sufficient) to attempt to exclude free radical pathways, and secondly to apply solvent extraction techniques to the polymer formed to determine if it is truly a copolymer or a blend of different polymers and copolymers. Indeed, even in the Drent paper [48], buried in the supplementary material, is described how the true transition metal-catalyzed random copolymer had to be freed of acrylate homopolymer (free radical-derived) by solvent extraction prior to analysis. [Pg.176]

The catalytic transformation of olefins by transition metal complexes has received a great deal of attention during the past two decades. These catalytic reactions are important, especially industrially, because they represent some of the most economical ways to synthesize olefinic monomers or polymers. The more common types of these transformation reactions are (a) dimerization or polymerization of a-olefins (b) dimerization, oligomerization, cyclooligomerization, or polymerization of con-... [Pg.269]

The Fischer-Tropsch activity of resin 5 and the unique reaction conditions have important consequences. The use of a reaction solvent raises the possibility of controlling heat removal in this appreciably exothermic process. The apparent homogeneous nature of the catalytic species suggests that other soluble Fischer-Tropsch catalysts may be forthcoming. Finally, CpCo-(00)2 possesses catalytic activity not found in soluble CpCo-(00)2 this demonstrates that attachment to a polymer support not only may induce changes in catalytic activity of a transition metal complex, but also might give rise to completely new activity (51,52,53). [Pg.182]

The ability of transition-metal complexes to activate substrates such as alkenes and dihydrogen with respect to low-barrier bond rearrangements underlies a large number of important catalytic transformations, such as hydrogenation and hydroformy-lation of alkenes. However, activation alone is insufficient if it is indiscriminate. In this section we examine a particularly important class of alkene-polymerization catalysts that exhibit exquisite control of reaction stereoselectivity and regioselec-tivity as well as extraordinary catalytic power, the foundation for modern industries based on inexpensive tailored polymers. [Pg.509]


See other pages where Transition metal complexes, polymers is mentioned: [Pg.252]    [Pg.252]    [Pg.381]    [Pg.559]    [Pg.461]    [Pg.197]    [Pg.43]    [Pg.6]    [Pg.123]    [Pg.853]    [Pg.61]    [Pg.198]    [Pg.632]    [Pg.125]    [Pg.476]    [Pg.477]    [Pg.588]    [Pg.48]    [Pg.40]    [Pg.56]    [Pg.458]    [Pg.8]    [Pg.11]    [Pg.19]    [Pg.43]    [Pg.227]    [Pg.73]    [Pg.122]    [Pg.126]    [Pg.127]    [Pg.193]    [Pg.230]    [Pg.436]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Arene-transition metal polymers complexes

Carbonyl complexes transition-metal polymers

Complex polymers

Metallization, complex polymers

Polymer , transition metal

Polymer complexation

Polymer metal complex

Polymer supported transition metal complexes

Polymeric ligands, transition metal polymer complexes

Transition Metal Dimer Complexes in Reactions with Polymers

Transition metal complexes, polymers containing

Transition polymer

© 2024 chempedia.info