Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymer solutions structure

A neutron scattering investigation of the polymer solution structure and protein-polymer interactions, Macromolecules 1992b, 25, 3932-3941. N. L. Abbott,... [Pg.241]

Finally, we want to describe two examples of those isolated polymer chains in a sea of solvent molecules. Polymer chains relax considerably faster in a low-molecular-weight solvent than in melts or glasses. Yet it is still almost impossible to study the conformational relaxation of a polymer chain in solvent using atomistic simulations. However, in many cases it is not the polymer dynamics that is of interest but the structure and dynamics of the solvent around the chain. Often, the first and maybe second solvation shells dominate the solvation. Two recent examples of aqueous and non-aqueous polymer solutions should illustrate this poly(ethylene oxide) (PEO) [31]... [Pg.492]

The formation mechanism of structure of the crosslinked copolymer in the presence of solvents described on the basis of the Flory-Huggins theory of polymer solutions has been considered by Dusek [1,2]. In accordance with the proposed thermodynamic model [3], the main factors affecting phase separation in the course of heterophase crosslinking polymerization are the thermodynamic quality of the solvent determined by Huggins constant x for the polymer-solvent system and the quantity of the crosslinking agent introduced (polyvinyl comonomers). The theory makes it possible to determine the critical degree of copolymerization at which phase separation takes place. The study of this phenomenon is complex also because the comonomers act as diluents. [Pg.4]

In a number of works (e.g. [339-341]) the authors sought to superimpose graphically the flow curves of filled melts and polymer solutions with different filler concentrations however, it was only possible to do so at high shear stresses (rates). More often than not it was impossible to obtain a generalized viscosity characteristic at low shear rates, the obvious reason being the structurization of the system. [Pg.54]

Two approaches to the attainment of the oriented states of polymer solutions and melts can be distinguished. The first one consists in the orientational crystallization of flexible-chain polymers based on the fixation by subsequent crystallization of the chains obtained as a result of melt extension. This procedure ensures the formation of a highly oriented supramolecular structure in the crystallized material. The second approach is based on the use of solutions of rigid-chain polymers in which the transition to the liquid crystalline state occurs, due to a high anisometry of the macromolecules. This state is characterized by high one-dimensional chain orientation and, as a result, by the anisotropy of the main physical properties of the material. Only slight extensions are required to obtain highly oriented films and fibers from such solutions. [Pg.207]

Hence, the main aim of the technological process in obtaining fibres from flexible-chain polymers is to extend flexible-chain molecules and to fix their oriented state by subsequent crystallization. The filaments obtained by this method exhibit a fibrillar structure and high tenacity, because the structure of the filament is similar to that of fibres prepared from rigid-chain polymers (for a detailed thermodynamic treatment of orientation processes in polymer solutions and the thermokinetic analysis of jet-fibre transition in longitudinal solution flow see monograph3. ... [Pg.211]

A very specific surface structure is observed after the annealing of a PS/polybuta-diene (PB) diblock copolymer, PS-b-PB, shown in Fig. 7 b. The surface is very smooth directly after preparation of the film from solution (similar to Fig. 7 a). By annealing at 120 °C the surface structure shown in Fig. 7 b evolves, which we believe is due to the formation of layers of PS and PB parallel to the surface. The outermost layer might not be completely filled due to lack of material leading to steps at the surface. Similar behavior is observed with other diblock copolymers such as PS-b-PMMA [61]. Enrichment of one component is also observed at the surface of a polymer solution [115,116] by X-ray fluorescene and evanescent wave techniques. [Pg.382]

Liquids of complex structure, such a polymer solutions and melts, and pseudo-homogeneous suspensions of fine particles, will generally exhibit non-Newtonian behaviour, with their apparent viscosities depending on the rate at which they are sheared, and the time for which they have been subjected to shear. They may also exhibit significant elastic... [Pg.58]

This equation is based on the assumption that pseudoplastic (shear-thinning) behaviour is associated with the formation and rupture of structural linkages. It is based on an experimental study of a wide range of fluids-including aqueous suspensions of flocculated inorganic particles, aqueous polymer solutions and non-aqueous suspensions and solutions-over a wide range of shear rates (y) ( 10 to 104 s 1). [Pg.111]

After polarization to more anodic potentials than E the subsequent polymeric oxidation is not yet controlled by the conformational relaxa-tion-nucleation, and a uniform and flat oxidation front, under diffusion control, advances from the polymer/solution interface to the polymer/metal interface by polarization at potentials more anodic than o-A polarization to any more cathodic potential than Es promotes a closing and compaction of the polymeric structure in such a magnitude that extra energy is now required to open the structure (AHe is the energy needed to relax 1 mol of segments), before the oxidation can be completed by penetration of counter-ions from the solution the electrochemical reaction starts under conformational relaxation control. So AHC is the energy required to compact 1 mol of the polymeric structure by cathodic polarization. Taking... [Pg.379]

Several assumptions were made in using the broad MWD standard approach for calibration. With some justification a two parameter equation was used for calibration however the method did not correct or necessarily account for peak speading and viscosity effects. Also, a uniform chain structure was assumed whereas in reality the polymer may be a mixture of branched and linear chains. To accurately evaluate the MWD the polymer chain structure should be defined and hydrolysis effects must be totally eliminated. Work is currently underway in our laboratory to fractionate a low conversion polydlchlorophosphazene to obtain linear polymer standards. The standards will be used in polymer solution and structure studies and for SEC calibration. Finally, the universal calibration theory will be tested and then applied to estimate the extent of branching in other polydlchlorophosphazenes. [Pg.252]

These two examples show that regular patterns can evolve but, by definition, dissipative structures disappear once the thermodynamic equilibrium has been reached. When one wants to use dissipative structures for patterning of materials, the dissipative structure has to be fixed. Then, even though the thermodynamic instability that led to and supported the pattern has ceased, the structure would remain. Here, polymers play an important role. Since many polymers are amorphous, there is the possibility to freeze temporal patterns. Furthermore, polymer solutions are nonlinear with respect to viscosity and thus strong effects are expected to be seen in evaporating polymer solutions. Since a macromolecule is a nanoscale object, conformational entropy will also play a role in nanoscale ordered structures of polymers. [Pg.191]

In order to understand polymer solution behaviour, the samples have to be characterised with respect to their molecular configuration, their molar mass and polydispersity, the polymer concentration and the shear rate. Classical techniques of polymer characterisation (light scattering, viscometry, ultracentrifugation, etc.) yield information on the solution structure and conformation of single macromolecules, as well as on the thermodynamic interactions with the solvent. In technical concentrations the behaviour of the dissolved polymer is more complicated because additional intramolecular and intermolecular interactions between polymer segments appear. [Pg.8]

A theoretical prediction of water-soluble polymer solutions is difficult to obtain due to their ability to build up aggregations and associations. A prediction of the viscosity yield is much easier to observe for solutions of synthetic polystyrene due to its simple solution structure. These solutions have been well characterized in other studies [19-23] concerning their chemical composition, molar mass and sample polydispersity. [Pg.8]

The aim of the present paper is to report on the solution structure of polymers, to show how structure-property relationships can be derived in a simple manner, so that they can be used for technical applications. Some predictions will also be made concerning the viscous and elasticity yield as well as polymer shear stability. To demonstrate these theoretical predictions narrowly distributed polystyrene samples will mainly be used as examples. [Pg.8]

Taking into account the relevance of the range of semi-dilute solutions (in which intermolecular interactions and entanglements are of increasing importance) for industrial applications, a more detailed picture of the interrelationships between the solution structure and the rheological properties of these solutions was needed. The nature of entanglements at concentrations above the critical value c leads to the viscoelastic properties observable in shear flow experiments. The viscous part of the flow behaviour of a polymer in solution is usually represented by the zero-shear viscosity, rj0, which depends on the con-... [Pg.13]

The nature of the solvent influences both the structure of the polymer in solution and its dynamics. In good solvents the polymer adopts an expanded configuration and in poor solvents it takes on a compact form. If the polymer solution is suddenly changed from good to poor solvent conditions, polymer collapse from the expanded to compact forms will occur [78], A number of models have been suggested for the mechanism of the collapse [79-82], Hydrodynamic interactions are expected to play an important part in the dynamics of the collapse and we show how MPC simulations have been used to investigate this problem. Hybrid MD-MPC simulations of the collapse dynamics have been carried out for systems where bead-solvent interactions are either explicitly included [83] or accounted for implicitly in the multiparticle collision events [84, 85]. [Pg.124]

The zinc complex of 1,1,1,5,5,5-hexafluoroacetylacetonate forms coordination polymers in reaction with either 2,5-bis(4-ethynylpyridyl)furan or l,2-bis(4-ethynylpyridyl)benzene. The X-ray crystal structures demonstrate an isotactic helical structure for the former and a syndio-tactic structure for the latter in the solid state. Low-temperature 1H and 19F NMR studies gave information on the solution structures of oligomers. Chiral polymers were prepared from L2Zn where L = 3-((trifluoromethyl)hydroxymethylene)-(+)-camphorate. Reaction with 2,5-bis(4-ethy-nylpyridyl)furan gave a linear zigzag structure and reaction with tris(4-pyridyl)methanol a homo-chiral helical polymer.479... [Pg.1187]

Another approach, neglecting the details of the chemical structure and concentrating on the universal elements of chain relaxation, is based on dynamic scaling considerations [4, 11], In particular in polymer solutions, this approach offers an elegant tool to specify the general trends of polymer dynamics, although it suffers from the lack of a molecular interpretation. [Pg.3]


See other pages where Polymer solutions structure is mentioned: [Pg.10]    [Pg.7]    [Pg.10]    [Pg.7]    [Pg.2365]    [Pg.2365]    [Pg.2367]    [Pg.2035]    [Pg.318]    [Pg.161]    [Pg.156]    [Pg.603]    [Pg.5]    [Pg.276]    [Pg.313]    [Pg.107]    [Pg.587]    [Pg.777]    [Pg.527]    [Pg.558]    [Pg.126]    [Pg.36]    [Pg.24]    [Pg.19]    [Pg.191]    [Pg.162]    [Pg.169]    [Pg.195]    [Pg.173]    [Pg.52]    [Pg.172]    [Pg.322]    [Pg.47]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Solute structure

Structural solutions

© 2024 chempedia.info