Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Crosslinking in polymerization

The last decade has seen quite remarkable advances in our knowledge of the structure and properties of the proanthocyanidins. Viscosity measurements were made of solutions of procyanidins isolated from Theobroma cacao and Chaenomeles speciosa with number-average degrees of polymerization of 6.1 and 11.8, respectively, in water and 1% sodium hydroxide at 25 °C. Procyanidins are apparently completely crosslinked by formaldehyde up to a chain length of 6 units, but few units are crosslinked in polymeric procyanidins. The second order rate constants observed for the formaldehyde reaction with catechin or epicatechin are approximately six times higher than that observed for the C. speciosa polymer. [Pg.172]

CNC REZCAT 2 is a highly reactive polyfunotlonal aziridine product designed for use as a crosslinker in polymeric systems containing carboxyl or hydroxyl functionalities. Incorporation of CNC REZCAT 2 into functional polymeric systems promotes crosslinking at lower energy levels, improves water and solvent resistance, and increases adhesion to many substrates. [Pg.164]

Scheme 12. Schematic structure of vinyl-eb-PDMS chains (dashed line) crosslinked with polymeric TMS-eb-PHMS through the hydrosilylation cure reaction. For illustration purpose the PDMS chains in this scheme are shorter and less abundant relative to PHMS than in real system. Scheme 12. Schematic structure of vinyl-eb-PDMS chains (dashed line) crosslinked with polymeric TMS-eb-PHMS through the hydrosilylation cure reaction. For illustration purpose the PDMS chains in this scheme are shorter and less abundant relative to PHMS than in real system.
An important part of the optimization process is the stabilization of the monomer-template assemblies by thermodynamic considerations (Fig. 6-11). The enthalpic and entropic contributions to the association will determine how the association will respond to changes in the polymerization temperature [18]. The change in free volume of interaction will determine how the association will respond to changes in polymerization pressure [82]. Finally, the solvent s interaction with the monomer-template assemblies relative to the free species indicates how well it will stabilize the monomer-template assemblies in solution [16]. Here each system must be optimized individually. Another option is simply to increase the concentration of the monomer or the template. In the former case, a problem is that the crosslinking as well as the potentially nonselective binding will increase simultaneously. In the... [Pg.174]

Possible morphologies of partially crystalline polymers are shown in Fig. 18. Figure 18a depicts the case of small crystallites that act as physical crosslinks between polymeric chains, thus connecting those chains into a 3-dimensional network. In the case depicted in Fig. 18b, the material forms ribbon-shaped or needle-shaped crystalline regions in which different segments of a large number of chains are incorporated. This could explain the low degree of crystallinity at the LST as detected for the iPP system [80]. [Pg.204]

To increase efficiency and ease of product separation from reaction mixtures, we also prepared styryl-substituted TADDOL-dendrimers that can act as crosslinkers in styrene suspension polymerizations, and thus lead to beads with intimately incorporated TADDOL sites [106,107]. Due to the presence of the con-formationally flexible dendritic spacers between the chiral ligand and the poly-... [Pg.167]

Figure 4.2 Homobifunctional crosslinkers may be used in a two-step process to conjugate two proteins or other molecules. In the first step, one of the two proteins is reacted with the crosslinker in excess to create an active intermediate. After removal of remaining crosslinker, a second protein is added to effect the final conjugate. Two-step reaction schemes somewhat limit the degree of polymerization obtained when using homobifunctional reagents, but can t entirely prevent it. Figure 4.2 Homobifunctional crosslinkers may be used in a two-step process to conjugate two proteins or other molecules. In the first step, one of the two proteins is reacted with the crosslinker in excess to create an active intermediate. After removal of remaining crosslinker, a second protein is added to effect the final conjugate. Two-step reaction schemes somewhat limit the degree of polymerization obtained when using homobifunctional reagents, but can t entirely prevent it.
A homobifunctional amine-reactive compound can be used initially to modify the amine groups on particles, while leaving the remaining amine-reactive groups available to couple with ligands. This type of reaction must be done with the crosslinker in great excess to prevent polymerization of the amine particles themselves. There must be enough crosslinker present... [Pg.600]

Since microgels are intramolecularly crosslinked macromolecules of colloidal dimensions, it is necessary for their synthesis to control the size of the growing crosslinked molecules. This can be achieved by carrying out polymerization and crosslinking in a restricted volume, i.e. that of a micelle or of a polymer coil. Thus, two general methods of microgel synthesis are available (1) emulsion polymerization, and (2) solution polymerization. [Pg.144]

The solvating power of the solvent used in polymerization also strongly influences the rate of cyclization. Batzilla crosslinked PVS in a series of toluene/ methanol mixtures of increasing content of the non-solvent methanol and measured the initial conversion rate of pendant vinyl groups, which corresponds to the rate of cyclization [217]. As seen in Fig. 41, this rate increases very rapidly... [Pg.191]

The mechanism of crosslinking emulsion polymerization and copolymerization differs significantly from linear polymerization. Due to the gel effect and, in the case of oil-soluble initiators, monomer droplets polymerize preferentially thus reducing the yield of microgels. In microemulsion polymerization, no monomer droplets exist. Therefore this method is very suitable to form microgels with high yields and a narrow size distribution, especially if oil-soluble initiators are used. [Pg.224]

The Effect of Crosslinker Concentration on the Rate of Polymerization. Ethylene glycol dimethacrylate is used most frequently as the crosslinker for HEMA formulations useful in contact lens manufacturing. To demonstrate the effect of crosslinker concentration on the curing rate, formulations derived from HEMA/Glycerine/BME at 85/15/0.17, while varying EGDMA (from 0.34 to 0.68), the peak times were about the same (3.73 and 3.61 minutes respectively). This is reasonable due to the similarity in molecular structure of the crosslinker and the monomer, and the low amount of crosslinker used. The possible presence of other crosslinker, such as the dimerization product of HEMA, is even less a factor to be considered in polymerization kinetics, due to low concentration (normally much less than 0.1 %, in-house information). [Pg.46]

Attainment of a maximum double bond conversion is typical in multifunctional monomer polymerizations and results from the severe restriction on bulk mobility of reacting species in highly crosslinked networks [26]. In particular, radicals become trapped or shielded within densely crosslinked regions known as microgels, and the rate of polymerization becomes diffusion limited. Further double bond conversion is almost impossible at this point, and the polymerization stops prior to 100% functional group conversion. In polymeric dental composites, which use multifunctional methacrylate monomers, final double bond conversions have been reported ranging anywhere from 55-75% [22,27-29]. [Pg.196]

In a previous section, the effect of plasma on PVA surface for pervaporation processes was also mentioned. In fact, plasma treatment is a surface-modification method to control the hydrophilicity-hydrophobicity balance of polymer materials in order to optimize their properties in various domains, such as adhesion, biocompatibility and membrane-separation techniques. Non-porous PVA membranes were prepared by the cast-evaporating method and covered with an allyl alcohol or acrylic acid plasma-polymerized layer the effect of plasma treatment on the increase of PVA membrane surface hydrophobicity was checked [37].The allyl alcohol plasma layer was weakly crosslinked, in contrast to the acrylic acid layer. The best results for the dehydration of ethanol were obtained using allyl alcohol treatment. The selectivity of treated membrane (H20 wt% in the pervaporate in the range 83-92 and a water selectivity, aH2o, of 250 at 25 °C) is higher than that of the non-treated one (aH2o = 19) as well as that of the acrylic acid treated membrane (aH2o = 22). [Pg.128]

He also prepared a poly(styrene-g-styrene) polymer by this technique [114], The lack of crosslinking in these systems is indeed proof of the control achieved with this technique. An eight-arm star polystyrene has also been prepared starting from a calixarene derivative under ATRP conditions [115]. On the other hand, Sawamoto and his coworkers used multifunctional chloroacetate initiator sites and mediation with Ru2+ complexes for the living free-radical polymerization of star poly(methylmethacrylate) [116,117]. More recent work by Hedrick et al. [84] has demonstrated major progress in the use of dendritic initiators [98] in combination with ATRP and other methodologies to produce a variety of structure controlled, starlike poly(methylmethacrylate). [Pg.86]

Dusek, K., Network formation by chain crosslinking (co)polymerization, in Haward, R. N. (ed.), Development in Polymerization, Vol. 3, Applied Science Publ., Barking, 1982, pp. 143-206. [Pg.143]


See other pages where Crosslinking in polymerization is mentioned: [Pg.160]    [Pg.160]    [Pg.121]    [Pg.686]    [Pg.162]    [Pg.99]    [Pg.227]    [Pg.142]    [Pg.229]    [Pg.66]    [Pg.205]    [Pg.1159]    [Pg.479]    [Pg.235]    [Pg.757]    [Pg.788]    [Pg.938]    [Pg.1009]    [Pg.144]    [Pg.146]    [Pg.182]    [Pg.188]    [Pg.192]    [Pg.194]    [Pg.197]    [Pg.205]    [Pg.198]    [Pg.9]    [Pg.15]    [Pg.162]    [Pg.99]    [Pg.105]   


SEARCH



In situ crosslinking or polymerizing materials

© 2024 chempedia.info